簡易檢索 / 詳目顯示

研究生: 許文曲
Hsu, Wen-Chu
論文名稱: 氧化鋅奈米線之製備及其於側向短間距場發射元件與壓力/紫外光檢測器之應用研究
Preparation of ZnO nanowires and its applications in lateral-structured field emitters and pressure/UV sensors
指導教授: 王水進
Wang, Shui-Jinn
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 100
中文關鍵詞: 氧化鋅場發射
外文關鍵詞: zno, field emission
相關次數: 點閱:60下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的研究主題係藉由水熱法(hydro-thermal growth, HTG)進行選擇性一維氧化鋅奈米線之側向成長(ZnO nanowires, ZnO-NWs),並將其應用於側向短間距二極及三極場發射(field emission, FE)元件、壓力及UV光感測器之製備,主要研究過程概分為下列五個部份進行:
    第一部分中,我們針對三種不同的側向短間距場發射元件結構(無覆蓋Pt、有覆蓋Pt和有覆蓋Pt並under-cut)進行外觀型態及電性分析,實驗結果發現於覆蓋Pt電極且使用磷酸進行under-cut之後,方可完全阻隔ZnO-NWs向上成長,達到選擇性側向成長的ZnO-NWs,而三個不同元件所展現出的FE電特性之起始電場(EON)分別為4.88、3.79及3.04 V/μm (@I=10 μA),電場增強因子(β)依序分別為2,556、4,901及7,439,顯然覆蓋Pt並under-cut之側向短間距元件可擁有較佳FE電特性。
    第二部分將使用具有Pt覆蓋及under-cut之元件,討論四種分別約為1.7、2.4、3.1和5.7 μm-1之奈米線線密度(line density),觀察其線密度對FE電特性之影響。其得到之起始電場(EON)與電場增強因子(β)分別為3.825、3.04、2.38和2.8 V/μm及6,943、7,439、10,359和8,502,此一結果顯示當側向短間距場發射元件線密度為3.1 μm-1時,可擁有較佳之FE電特性。
    於第三部分中,我們將使用上述所製備之FE元件(覆蓋Pt電極、under-cut以及奈米線密度為3.1 μm-1)應用於不同真空壓力條件下所進行之場發射特性分析與探討。當壓力調變在8.110-7、5.310-5、5.310-4、5.310-3、3.210-2、及7.6102 Torr時所測得起始電壓(VON)分別為2.47、2.95、3.01、3.54、3.72及4.25 V (@I=10 μA);於操作電壓為9 V時所得到之操作電流分別為272、228、191、167、124和84 μA;電場增強因子(β)則分別為5,269、5,255、4,856、4,613及4,577 μm-1。此一實驗結果顯示此元件隨著壓力的調變而展現不同之FE電特性,因此應用ZnO-NWs於壓力感測器材料預期將極具潛力。
    於第四部分我們係將此一元件,分別置於UV光波長為366、254 nm及無光源之環境下進行FE電特性量測,所測得起始電壓(VON)分別為1.55、3.01和4.24 V (@I=10 μm),操作電流分別為347、154及84 μA (V=9 V),而場增強因子(β)分別為5,525、4,793和4,577 μm-1。此一結果顯示利用ZnO-NWs對UV光所產生之響應,將極適合進行UV光感測器之應用開發。
    於第五部分方面,我們製備具電晶體特性之下閘極結構ZnO-NWs FE-triode元件。當閘極電壓Vg分別操作在50、40、30、0、-5和-10 V時,其EON分別約為12.8、15.4、16.6、18、18.3和18.6 V/μm (@Ja=10 mA/cm2),Jmax為6.05、1.6、0.2、0.054、0.027和0.014 A/cm2 (@E=19 V/μm),電場增強因子(β)亦分別約為385、259、194、178、165及119。當Vg=43 V時可得到最大的轉移電導(gm, max)約為2.4 μS,在場發射電流密度0.25 mA/cm2時,可以得到最大的μ=2.45。此可歸因於對本製備三極元件施加閘極正電壓可增強陰極發射端邊緣處之局部電場(local field)強度,進而誘發及加速陰極端電子之發射;而施加負偏壓將會降低陰極發射端之局部電場強度,也抑制了陰極電子之發射。
    本研究以HTG製備出具有良好的高寬比之側向成長ZnO NWs,其不僅可應用於壓力感測器及UV光偵測器,另其在FE-triode之上擁有良好的場發射電晶體之特性,預期在未來於真空微電子元件應用上極具潛力。

    In this thesis, the preparation of the lateral ZnO nanowires (ZnO-NWs) using hydro-thermal growth (HTG) method and its applications in lateral-structured field emission (FE) emitters (FE-diode and FE-triode) and pressure/UV sensors were investigated.
    There are five parts comprised in this thesis. For the first part on lateral-structured FE emitters, three types of samples were proposed to have different selectivities for the lateral growth of ZnO NWs. Experimental results show that samples with Pt barrier layer and wet etching to the AZO side-walls structure could have the highest lateral growth selectivity. It shows a turn on electric field (EON) of 3.04 V/µm (@I=10 µA) and a field enhance factor (β) of 7439.
    The second part focused on the screen effects of ZnO-NWs line density on FE characteristics. ZnO-NWs with a line density of 1.7, 2.4, 3.1 and 5.7 µm-1 were prepared and FE performances were examined. It is found that ZnO-NWs with a line density of 3.1 µm-1 exhibits the most satisfied FE performance with an EON of 2.8 V/µm and a β of 8502 among all prepared samples.
    In the third part of this thesis, based on the sample with Pt coverage and AZO side-wall etching, responses to pressure sensing were presented and discussed. Experimental results show that, under ambient pressure of 8.110-7, 5.310-5, 5.310-4, 5.310-3, 3.210-2 and 7.6102 Torr, the measured values of Eon and β are with a dependence of 2.47, 2.95, 3.01, 3.54, 3.72, and 4.25 V (@I=10 A) and 5269, 5255, 4856, 4613, and 4577 µm-1 on the ambient pressure. It reveals that the proposed FE emitters based on lateral-structured ZnO NWs could be a potential device for pressure sensing applications.
    In the fourth part of this thesis, the photo (366 and 254 nm UV lights) responses of the above-mentioned samples were reported and discussed. Our results show that the sample exhibits a better FE performances under 366 nm UV light irradiation than that under 254 nm one at the same photo power of 6 mW/cm2. Again, it suggests that the proposed FE emitters based on lateral-structured ZnO NWs could be a potential device for UV detectors.
    In the final part of this thesis, bottom-gate FE-triode device based on laterally-grown ZnO NWs were fabricated and characterized. Under a gate bias (Vg) of 50, 40, 30, 0, -5, and -10 V, the measured EON are 12.8, 15.4, 16.6, 18, 18.3, and 18.6 V/µm (@J=10 mA/cm2), Jmax of 6.05, 1.6, 0.2, 0.054, 0.027, and 0.014 A/cm2 (@E=19 V/µm), and β of 385, 259, 194, 178, 165, and 119, respectively. The maximum transconductance (gm, max) of 2.4 µS was obtained at Vg=43 V and the maximum amplification factor (µ) of 2.45.
    It is expected that HTG of lateral ZnO-NWs which are with the merits of high aspect-ratio could be a potential material for the applications in FE emitters and pressure/UV sensors, which could be very promising candidates for low-operating-voltage vacuum electronics in the near future.

    中文摘要 i 英文摘要 iv 誌 謝 vi 表 目 錄 xi 圖 目 錄 xii 第一章 緒論 1 1-1簡介 1 1-2研究動機 2 第二章 簡介 5 2-1氧化鋅材料簡介 5 2-2一維材料成長機制 7 2-2-1汽-液-固機制(vapor-liquid-solid (VLS) mechanism) 7 2-2-2 溶液-液相-汽相機制(solution-liquid-solid (SLS) mechanism) 10 2-2-3汽-固機制(vapor-solid (VS) mechanism) 11 2-3氧化鋅奈米線製程方法 11 2-3-1電鍍法(Electroplating method)[26] 11 2-3-2 汽-液-固磊晶成長法(Vapor-liquid-solid epitaxial growth method) 13 2-3-3化學氣相沈積法(chemical vapor deposition, CVD)[27] 13 2-3-4有機金屬氣相磊晶製程(metalorganic vapor-phase epitaxial, MOVPE)[28] 14 2-3-5使用NiO作為催化劑成長[29] 15 2-3-6水熱法(hydrothermal method)[30] 15 2-4水熱法成長(hydro-thermal growth, HTG)氧化鋅奈米線之演進與製程方法 16 2-5電子發射(electron emission) 22 2-5-1熱電子發射(hot electron emission) 23 2-5-2熱場發射(hot field emission) 24 2-5-3場發射(field emission) 24 2-5-4 F-N Theory 25 2-5-5電場屏蔽效應(screen effect) 28 第三章 實驗流程、分析方法與設備 31 3-1前言 31 3-2 實驗材料及設備 31 3-2-1 實驗材料 32 3-2-2 實驗設備 33 3-3 RCA clean 流程 44 3-4 環形傳輸量測(CTLM) 47 第四章 具ZnO-NWs之側向短間距(tip-to-tip)場發射元件之製備及其於壓力與紫外光檢測之應用 50 4-1具ZnO-NWs之側向短間距場發射元件之製備 50 4-2覆蓋電極金屬材料之選用 52 4-3製備元件之外觀型態與晶型結構分析 53 4-3-1 元件之外觀型態(SEM分析) 53 4-3-2元件之晶型結構分析(XRD、TEM、SAED及EDS) 56 4-4 場發射(field emission, FE)電特性量測與分析 59 4-4-1探討覆蓋電極及under-cut之影響 59 4-4-2晶種層AZO厚度對於側向成長ZnO-NWs線密度及FE電特性之影響 61 4-4-3本所製備具側向ZnO-NWs場發射器在不同真空壓力條件下之場發射特性分析與探討 65 4-4-4探討紫外光對ZnO-NWs場發射之影響 70 第五章 具側向成長ZnO-NWs底閘極場發射三極元件(FE-triode)之製備及電性分析與研究 75 5-1 研究動機 75 5-2 具側向成長ZnO-NWs底閘極(FE-triode)之製備 76 5-3 製備元件之外觀型態與晶型結構分析 78 5-4 以商業軟體(Simion 7.0)進行元件之電場模擬 80 5-5 具側向成長ZnO-NWs底閘極(FE-triode)之場發射特性分析與探討 81 第六章 結論與未來工作 88 6-1 結論 88 6-2 未來工作 91 參考文獻 93

    [1] S. Shao, P. Jia, S. Liu, and W. Bai, “Stable field emission from rose-like zinc oxide nanostructures synthesized through a hydrothermal route”, Materials Letters, Vol. 62, p.1200, 2008
    [2] H Y Yang, S P Lau, S. F. Yu, L. Huang, M. Tanemura, J. Tanaka, T. Okita, and H. H. Hng, “Field emission from zinc oxide nanoneedles on plastic substrates”, Nanotechnology, Vol. 16, p. 1300, 2005
    [3] C. X. Xu and X. W. Sun J, “Strategies to Improve Field Emission Performance of Nanostructural ZnO”, Electron. Mater., Vol. 36, p. 543, 2007
    [4] K. C. Chin, C. K. Poh, G. L. Chong, J. Y. Lin, C. H. Sow, A. T. S. Wee, “Large area, rapid growth of two-dimensional ZnO nanosheets and their field emission performances”, Appl. Phys. A, Vol. 90, p. 623, 2008
    [5] J. Chen, W. Lei, W. Chai, Z. Zhang, C. Li, and X. Zhang, “High field emission enhancement of ZnO-nanorods via hydrothermal synthesis”, Solid-State Electron., Vol. 52, p. 294, 2008
    [6] K. Hou, C. Li, W. Lei, X. Zhang, X. Yang, K. Qu, B. Wang, Z. Zhao, X. W. Sun, “Influence of synthesis temperature on ZnO nanostructure morphologies and field emission properties”, Physica E, Vol. 41, p. 470, 2009
    [7] A.-J. Cheng a, D. Wang b, H.W. Seo b, C. Liu a, M. Park b, Y. Tzeng, “Cold cathodes for applications in poor vacuum and low pressure air environments Carbon nanotubes versus ZnO nanoneedles”, Diamond & Related Materials, Vol. 15, p.426, 2006
    [8] Y. Zhang, D. Lan, Y. Wang, and F. Wang, Chem. China, Vol. 3, p. 229, 2008
    [9] J. Chen, W. Lei, W. Chai, Z. Zhang, C. Li, and X. Zhang, “High field emission enhancement of ZnO-nanorods via hydrothermal synthesis”, Solid-State Electron., Vol. 52, p. 294, 2008
    [10] C. Y. Lee, T. Y. Tseng, S. Y. Li, and P. Lin, “Electrical characterizations of a controllable field emission triode based on low temperature synthesized ZnO nanowires”, Nanotechnology, Vol. 17, p. 83, 2006
    [11] Veljko Milanovic´, Lance Doherty, Dana A. Teasdale, Siavash Parsa, and Kristofer S. J. Pister, “Micromachining Technology for Lateral Field Emission Devices,” IEEE Transactions on Electron Devices, Vol. 48, No. 1, 2001
    [12] Peardon’s Handbook of Crystallographic Data, 4795
    [13] K. J. Kima, and Y. R. Park, “Large and abrupt optical band gap variation in In-doped ZnO,” Appl. Phys. Lett., Vol. 78, no. 4, p. 475, 2000
    [14] Y. Y. Xi, Y. F. Hsu, A. B. Djurisic, A. M. C. Ng, W. K. Chen, H. L. Tam, and K. W. Cheah, “NiO/ZnO light emitting diodes by solution-based growth,” Appl. Phys. Lett., Vol. 92, no. 113505, 2008
    [15] Z. K. Tang, G. K. L. Wong, and P. Yu, “Room-temperature ultraviolet laser emission from self-assembled ZnO microcristallite films,” Appl. Phys. Lett., Vol. 72, no. 25, 1998
    [16] Hiromichi Ohta, Masahiro Orita, and Masahiro Hirano, “Fabrication and characterization of ultraviolet-emitting diodes composed of transparent p-n heterojunction, p-SrCu2O2 and n-ZnO,” Journal of Applied Physics, Vol. 89, no. 10, 2001
    [17] R. S. Wagner, and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett., Vol. 5, no. 5, p. 89, 1964
    [18] Y. Wu, and P. Yang, “Direct observation of vapor-liquid-solid nanowire growth,” J. Am. Chem. Soc., Vol. 123, p. 3165, 2001
    [19] Q. H. Li, Y. X. Liang, Q. Wan, and T. H. Wang, “Oxygen sensing characteristics of individual ZnO nanowire transistors,” Appl. Phys. Lett., Vol. 85, no. 26, 2004
    [20] Y. W. Zhu, H. Z. Zhang, X. C. Sun, S. Q. Feng, J. Xu, Q. Zhao, B. Xiang, R. M. Wang, and D. P. Yu “Efficient field emission from ZnO nanoneedle arrays,” Appl. Phys. Lett., Vol. 83, no. 1, 2003
    [21] R. S. Wagner, and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett., Vol. 5, no. 5, p. 89, 1964
    [22] Y. Wu, and P. Yang, “Direct observation of vapor-liquid-solid nanowire growth,” J. Am. Chem. Soc., Vol. 123, p. 3165, 2001
    [23] T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, W. E. Buhro, “Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth,” Science, Vol. 270, 5243, p. 1791,1995
    [24] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim and H. Yan, “One-Dimensional Nanostructures: Synthesis ,Characterization, and Applications,” ADV. MATER., Vol. no. 15, p. 353, 2003
    [25] E. W. Wong, P. E. Sheehan, C. M. Lieber, “Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes,” Science, Vol. 277, p. 1971, 1997
    [26] Y. Li, G. W. Meng, L. D. Zhang, “Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties,” Appl. Phsy. Lett., Vol. 76, p. 2011, 2000
    [27] W. I. Park, D. H. Kim, S. W. Jung, G. C. Yi, “Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods,” Appl. Phys. Lett., Vol. 80, p. 4232, 2002
    [28] 中央研究院2006年年輕學者研究著作獎研究成果簡介, pp.14-19
    [29] W. I. Park, D. H. Kim, S. W. Jung, G. C. Y. , “Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods,” Appl. Phsy. Lett., Vol. 80, p. 4232, 2002
    [30] L. Vayssieres, “growth of arrayed nanorods and nanowires of ZnO form aqueous solution,” Adv. Mater., Vol. 15, no. 5, p.464, 2003
    [31] Y. Y. Xi, Y. F. Hsu, A.B. Djurisic, A. M. C. Ng, W. K. Chan, H. L. Tam, and K. W. Cheah, “NiO/ZnO light emitting diodes by solution based growth,” Appl. Phsy. Lett., Vol. 92, p. 113505, 2008
    [32] M. K. Lee, C. L. Ho, and C. H. Fan, “Enhancement of light extraction efficiency of gallium nitride flip-chip light-emitting diode with silion oxide hemispherical microlens on its back,” IEEE Photonics technology Letters, Vol. 20, no. 15, p. 1293, 2008
    [33] K. Tsukuma, T. Akiyama , and Imai, “Liquid phase deposition film of tin oxide,” J. Non-Cryst. Solid, Vol. 210, no. 48, p. 48, 1997
    [34] L. Spanhel, M. A. Anderson, “Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids,” J. Am. Chem. Soc., Vol. 113(8), p. 2826, 1991
    [35] L. Vayssieres, K. Keis, S. E. Lindquist, A. Hagfeldt, “Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO,” J. Phys. Chem. B., Vol. 105(17), p. 3350, 2001
    [36] L. Vayssieres, N. Beermann, S. E. Lindquist, A. Hagfeldt, “Controlled Aqueous Chemical Growth of Oriented Three-Dimensional Crystalline Nanorod Arrays: Application to Iron(III) Oxides,” Chemistry of Materials., Vol. 13, no. 2, p. 233, 2001
    [37] Z. R. Tian, J. A. Voigt, J. Liu, B. Mckenzie, M. J. Mcdermott, “Biomimetic arrays of oriented helical ZnO nanorods and columns,” J. Am. Chem. Soc., Vol. 124(44), p. 12954, 2002
    [38] L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, P. Yang, “Low-temperature wafer-scale production of ZnO nanowire arrays,” Angew. Chem., Vol. 115, p. 3139, 2003
    [39] Q. Li, V. Kumar, Y. Li, H. Zhang, T. J. Marks, R. P. H. Chang, “Fabrication of ZnO nanorods and nanotubes in aqueous solution,” Chem. Mater., Vol. 17, p. 1001, 2005
    [40] K. Govender, David S. Boyle, P. B. Kenway, and P. O’Brien, “Understanding the factors that govern deposition and morphology of thin film of ZnO from aqueous solution,” J. Mater. Chem., Vol. 14, p. 2575, 2004
    [41] R. H. Fowler and L. W. Nordheim, "Electron emission in intense electric fields", Proceedings of the Royal Society, Vol. 119, p. 173, 1928
    [42] S. H. Jo, D. Z. Wang, J. Y. Huang, W. Z. Li, K. Kempa K and Z. F.Ren, “Field emission of carbon nanotubes grown on carbon cloth”, Appl. Phys. Lett., Vol. 85, no. 810, 2004.
    [43] Soo Young Kim, “Growth and Field Emission of Multi-walled Carbon Nanotubes”, University of Southern California, Master of Science, 2008
    [44] Q. Zhao, H. Z. Zhang, Y. W. Zhu, S. Q. Feng, X. C. Sun, J. Xu, and D. P.Yu, “Morphological effects on the field emission of ZnO nanorod arrays”, Appl. Phys. Lett., Vol. 86, no. 203115, 2005
    [45] T. Utsumi, “Vacuum microelectronics: what's new and exciting”, IEEE Trans. Electron Dev., Vol. 38, p. 2276, 1991
    [46] L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, and L. Schlapbach, “Scanning field emission from patterned carbon nanotube films”, Appl. Phys. Lett., Vol. 76, No. 15, 2000
    [47] J. B. Cui, C. P. Daghlian, U. J. Gibson, R. Püsche, P. Geithner, and L. Ley, “Low-temperature growth and field emission of ZnO nanowire arrays,” J. Appl. Phys., Vol. 97, p. 044315, 2005
    [48] J. B. Cui, C. P. Daghlian, U. J. Gibson, R. Püsche, P. Geithner, and L. Ley, “Low-temperature growth and field emission of ZnO nanowire arrays,” J. Appl. Phys., Vol. 97, p. 044315, 2005
    [49] Kaiyou Qian, Ting Chen, Bingyong Yan, Yangkui Lin, Dong Xu, Zhuo Sun, Bingchu Cai, “Studies on vacuum microelectronic pressure sensors based on carbon nanotubes arrays,” Physica E, Vol. 31, p.1, 2006
    [50] Y.G. Chen, M. Ogura, S. Yamasaki, H. Okushi, “Investigation of specific contact resistance of ohmic contacts to B-doped homoepitaxial diamond using transmission line model,” Diamond & Related Materials, Vol. 13, p. 2121, 2004
    [51] Han-Ki Kim, Sang-Heon Han, and Tae-Yeon Seong and Won-Kook Choi, “Low-resistance Ti-Au ohmic contacts to Al-doped ZnO layers,” Appl. Phys. Lett., Vol. 77, No. 11, 2000
    [52] Xudong Wang, Jun Zhou, Changshi Lao, Jinhui Song, Ningsheng Xu, and Zhong L. Wang, “In Situ Field Emission of Density-Controlled ZnO Nanowire Arrays,” Adv. Mater., Vol.19, p. 1627, 2007
    [53] C Li, YYang, XW Sun, W Lei, X B Zhang, BPWang,J X Wang, B K Tay, J DYe, GQ Lo and D L Kwong, “Enhanced field emission from injector-like ZnO nanostructures with minimized screening effect,” Nanotechnology, Vol. 18, p. 135604, 2007
    [54] S. H. Jo, J. Y. Lao, Z. F. Ren, R. A. Farrer, T. Baldacchini, and J. T. Fourkas, “Field-emission studies on thin films of zinc oxide nanowires,” Appl. Phys. Lett., Vol. 83, No. 23, 2003
    [55] Raghunandan Seelaboyina, JunHuang, Jucheol Park, Dong Hun Kang and Won Bong Choi, “Multistage field enhancement of tungsten oxide nanowires and its field emission in various vacuum conditions,” Nanotechnology, Vol. 17, p. 4840, 2006
    [56] A.-J. Cheng, D. Wang, H.W. Seo, C. Liu, M. Park, Y. Tzeng, “Cold cathodes for applications in poor vacuum and low pressure air environments Carbon nanotubes versus ZnO nanoneedles,” Diamond & Related Materials, Vol. 15 p. 426, 2006
    [57] Do-Hyung Kim, Hoon-Sik Jang, Sung-Youp Lee and Hyeong-Rag Lee, “Effects of gas exposure on the field-emission properties of ZnO nanorods”, Nanotechnology Vol. 15, p. 1433, 2004
    [58] Qi Qi, Tong Zhang, Qingjiang Yu, RuiWang, Yi Zeng, Li Liu, Haibin Yang, “Properties of humidity sensing ZnO nanorods-base sensor fabricated by screen-printing,” Sensors and Actuators B, Vol. 133, p. 638, 2008
    [59] R. Schaub, P. Thostrup, N. Lopez, E. Lægsgaard, I. Stensgaard, J.K. Nørskov, F. Besenbacher, “Oxygen vacancies as active sites for water dissociation on rutile TiO2(1 1 0),” Phys. Rev. Lett., Vol. 87, p. 266104, 2001
    [60] C Li, YYang, XW Sun, W Lei, X B Zhang, BPWang,J X Wang, B K Tay, J DYe, GQ Lo and D L Kwong, “Enhanced field emission from injector-like ZnO nanostructures with minimized screening effect,” Nanotechnology, Vol. 18, p. 135604, 2007
    [61] Sifei Shao, Peijun Jia, Shengchun Liu, Wei Bai, “Stable field emission from rose-like zinc oxide nanostructures synthesized through a hydrothermal route,” Materials Letters, Vol. 62, p.1200, 2008
    [62] Raghunandan Seelaboyina, JunHuang, Jucheol Park, Dong Hun Kang and Won Bong Choi, “Multistage field enhancement of tungsten oxide nanowires and its field emission in various vacuum conditions,” Nanotechnology, Vol. 17, p. 4840, 2006
    [63] A.-J. Cheng, D. Wang, H.W. Seo, C. Liu, M. Park, Y. Tzeng, “Cold cathodes for applications in poor vacuum and low pressure air environments Carbon nanotubes versus ZnO nanoneedles,” Diamond & Related Materials, Vol. 15 p. 426, 2006
    [64] U.N. Maiti, K.K. Chattopadhyay, S. Karan and B. Mallik, “Synthesis of a zinc oxide nanosheet–nanowire network complex by a low-temperature chemical route: Efficient UV detection and field emission property,” Scripta Materialia, Vol. 62, p. 305, 2010
    [65] Chih-Han Chen, Shoou-Jinn Chang, Sheng-Po Chang, Yao-Ching Tsai, I-Cherng Chen, Ting-Jen Hsueh, Cheng-Liang Hsu, “Enhanced field emission of well-aligned ZnO nanowire arrays illuminated by UV,” Chemical Physics Letters, Vol. 490, p. 176, 2010
    [66] J. B. Chen, C. J. Xu, J. C. She, S. Z. Deng, Jun Chen, and N. S. Xu, “Pulsed-laser treatment of solution-grown ZnO nanowires in nitrogen Enhancing in electrical conduction and field emission,” J. Appl. Phys., Vol. 107, p. 024312, 2010
    [67] Q. Zhao, X. Y. Xu, X. F. Song, X. Z. Zhang, D. P. Yu, C. P. Li and L. Guo “Enhanced field emission from ZnO nanorods via thermal annealing in oxygen,” Appl. Phys. Lett., Vol. 88, p. 033102, 2006
    [68] Jing Chen, Wei Lei, Weiqiang Chai, Zichen Zhang, Chi Li, Xiaobing Zhang “High field emission enhancement of ZnO-nanorods via hydrothermal synthesis,” Solid-State Electronics, Vol. 52, p. 294, 2008
    [69] Q. Wan, K. Yu, T. H. Wang, and C. L. Lin, “Low-field electron emission from tetrapod-like ZnO nanostructures synthesized by rapid evaporation,” Appl. Phys. Lett., Vol. 83, No. 11, 2003
    [70] Farid Jamali Sheini, Dilip S. Joag, Mahendra A. More, Jai Singh, O.N. Srivasatva “Low temperature growth of aligned ZnO nanowires and their application as field emission cathodes,” Materials Chemistry and Physics, Vol. 120, p. 691, 2010
    [71] Chun Li, Guojia Fang, Longyan Yuan, Nishuang Liu, Jun Li, Dejie Li, Xingzhong Zhao “Field electron emission improvement of ZnO nanorod arrays after Ar plasma treatment,” Applied Surface Science, Vol. 253, p. 8478, 2007
    [72] Nishuang Liu, Guojia Fang, Wei Zeng, Hao Long, Longyan Yuan, and Xingzhong Zhao “Diminish the screen effect in field emission via patterned and selective edge growth of ZnO nanorod arrays,” Appl. Phys. Lett., Vol. 95, No. 153505, 2009
    [73] S. C. Lyu, Y. Zhang, H. Ruh, C. J. Lee, “Low temperature growth and photoluminescence of well-aligned zinc oxide nanowires,” Chem. Phys. Lett., Vol. 363, no. 134, p. 134, 2002
    [74] Sigen Wang, Jianjun Wang, Peter Miraldo, Mingyao Zhu, Ronald Outlaw, Kun Hou, Xin Zhao, Brian C. Holloway and Dennis Manos, “High field emission reproducibility and stability of carbon nanosheets and nanosheet-based backgated triode emission devices”, Appl. Phys. Lett., Vol. 89, No. 183103, 2006
    [75] Do Yoon Kim, Ji-Beom Yoo, In Taek Han, Ha Jin Kim, Ha Jong Kim, Jae Eun Jung, Yong Wan Jin, Jong Min Kim and Kyoung-Hwan Chin, “The density control of carbon nanotubes using spin-coated nanoparticle and its application to the electron emitter with triode structure”, Diamond & Related Materials, Vol. 14, p. 2084, 2005
    [76] Sangyeon HAN, Sun-a YANG, Jongho LEE and Hyungcheol SHIN, “Lateral silicon field emission devices using electron beam lithography”, Jpn. J. Appl. Phys., Vol. 39, p. 2556, 2000
    [77] Y.M. Wong, W.P. Kang, J.L. Davidson, B.K. Choi, W. Hofmeister and J.H. Huang. “Field emission triode amplifier utilizing aligned carbon nanotubes”, Diamond & Related Materials, Vol. 14, p. 2069, 2005
    [78] Y. M. Wong, W. P. Kang and J. L. Davidson, “Transistor characteristics of thermal chemical vapor deposition carbon nanotubes field emission triode”, J. Vac. Sci. Technol. B, Vol. 23, No. 2, 2005
    [79] Chia Ying Lee, Tseung Yuen Tseng, SeuYi Li and Pang Lin, “Electrical characterizations of a controllable field emission triode based on low temperature synthesized ZnO nanowires”, Nanotechnology, Vol. 17, p. 83, 2006
    [80] K. Subramanian, W. P. Kang, and J. L. Davidson, “A monolithic nanodiamond lateral field emission triode”, Phys. Status Solidi A 206, No. 9, p. 2074, 2009
    [81] Cheol-Min Park, Moo-Sup Lim, and Min-Koo Han, “A Novel In Situ Vacuum Encapsulated Lateral Field Emitter Triode”, IEEE Electron Devices Letters, VOL. 18, NO. 11, 1997
    [82] 曾伯霜, “JSM-6700F HR-FESEM Opearation Manual”, Department of Chemical Engineering National Cheng Kung University

    無法下載圖示 校內:2013-08-05公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE