簡易檢索 / 詳目顯示

研究生: 張夢臣
Chang, Mong-Chen
論文名稱: 以溶熱法製備各種金屬氧化物奈米材料之研究
A Study on the Solvothermal Synthesis of Different Metal Oxide Nano Materials
指導教授: 林弘萍
Lin, Hong-Ping
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 116
中文關鍵詞: 溶熱法水熱法氧化物磁鐵礦氧化銅氧化亞銅氧化銦
外文關鍵詞: solvothermal synthesis, metal oxide, magnesium ferrite, MnFe2O4, hollow, nanosphere, nanotube, Kirkendall effect, magnetic resonance imaging, Cu2O, nanowire, CuO, porous, gelatin, phosphine, In2O3, cubic, monodispersed
相關次數: 點閱:94下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以溶熱法合成各類金屬氧化物奈米材料,並分成三個部分,探討不同的奈米金屬氧化物不同的合成組成及應用領域。第一部分為以溶熱法合成MnFe2O4中空奈米球、MnFe2O4奈米管與Mn3O4奈米桿等磁性材料及這些材料在核磁共振造影(MRI)上的應用。第二部分為以水熱法合成Cu2O奈米線與CuO孔洞奈米球及這些材料在磷化氫(PH3)之氣體感測器上的應用。第三部分為以溶熱法合成In2O3奈米方塊及其型態轉變機構的探討。

    第一部分 MnFe2O4中空奈米球、MnFe2O4奈米管與Mn3O4奈米桿的合成及應用
    本部分實驗以硬酯酸根為capping agent,先合成出硬酯酸之金屬離子前驅物,再以正辛醇(1-octanol)為溶劑,並加入少量的去離子水後,以高壓釜進行溶熱法;隨著產物中Mn / Fe比例的改變,可合成出中空奈米球及奈米管,經由時間參數的探討,其形成機構為Kirkendall effect的物理擴散過程,且此兩種材料皆具有內外層的雙表面積,並在常溫下皆屬於超順磁,故在核磁共振造影上的應用,除了可以增加顯影劑與水的接觸表面積,也對T2*-weighted核磁造影,有較大的對比程度;此外,在探討MnFe2O4奈米管之反應機制時,合成出具均勻性與分散性的Mn3O4奈米桿,並探討其基本物理化學性質。

    第二部分 Cu2O奈米線與CuO孔洞奈米球的合成及應用
    本實驗使用明膠(gelatin)來做為結構導向試劑(structure-directing agent),並以醋酸銅水溶液為銅的來源,進行水熱反應,並藉由高壓釜(autoclave)高溫高壓水熱或P.P 瓶100℃水熱等兩種不同合成方式,分別合成出具特殊結構的Cu2O奈米線與具高表面積以及孔洞性的CuO孔洞奈米球,並且可藉由調整反應時間和反應溫度來改變產物中氧化銅、氧化亞銅與金屬銅間的比例,藉此合成出Cu2O / CuO / Cu複合材料。在應用方面則是這些材料在磷化氫之氣體感測上的應用。

    第三部分 合成均勻性高的In2O3奈米方塊
    本章節延用第一部份的方法,應用在不同的金屬氧化物上。首先,先合成出硬酯酸銦為金屬前驅物,以正辛醇為溶劑,並加入少量水後,以高壓釜進行溶熱法。所合成的產物為顆粒大小均勻的In2O3奈米方塊,除了探討基本物理化學性質外,也藉由改變反應時間,研究型態轉變之反應機制。

    Part 1. Synthesis of magnetic nanomaterials
    Of the methods employed in the preparation of magnesium ferrite (MnFe2O4) nanomaterials, the thermal decomposition and co-precipitation have been mainly used as a synthetic route. In this study, hollow shaped magnesium ferrite (MnFe2O4) nanoparticles were obtained from a one-pot solvothermal treatment on a mixture of iron stearate (Fe(SA)3) and magnesium stearate (Mn(SA)2) in the 1-octanol solution at 240℃. By adjusting the ratio of Fe to Mn from 2:1 to 1:1, the morphologies of the resulted MnFe2O4 nanoparticles transfer from hollow nanospheres to nanotubes. Time-dependent observation indicated that the proposed hollowing mechanism is followed with a physical diffusion process (Kirkendall effect). TEM, XRD, FT-IR, and XPS measurements were carried out to characterize the prepared samples. The magnetization measurements including ZFC-FC curves and magnetization vs. H/T as well as their usefulness for in vitro magnetic resonance (MR) imaging were investigated for both hollow MnFe2O4 nanospheres and nanotubes. On the basis of in-vitro MR assays, MnFe2O4 nanotubes were found to have negative-contrast ability for MR images.

    Part 2. Preparation of Cu2O Nanowires and CuO Porous Nanospheres
    Cu2O nanowires and CuO porous nanospheres were prepared via a one-pot hydrothermal route by using the gelatin type B as structure-directing agent and copper acetate aqueous solution as copper source. By adjusting reaction time and reaction temperature, the composition of those materials could be controllable. The composites of the resulted CuO-Cu2O-Cu nanomaterials would be feasible. In practical applications, the Cu2O nanowires and CuO porous nanospheres could be potentially useful for the gas detection of phosphine.

    Part 3. Synthesis of monodispersed indium oxide cubic nanoparticles
    Nearly monodispersed cubic indium oxide (In2O3) were prepared by a one-pot solvothermal route using indium stearate (In(SA)3) as the In2O3 precursor in 1-octanol at 240oC. By changing the reaction time, the size of cubic indium oxide would be tunable. The indium oxide cubic nanoparticles could be used as the electrode substrate in DSSC (dye-sensitized solar cell).

    第一章 緒論1 1-1. 奈米材料的介紹1 1-1-1. 奈米效應1 1-1-2. 製備奈米材料的方法3 1-2. 溶熱法6 1-2-1. 溶熱法反應機構7 1-2-2. 影響溶熱法製備粒子大小與形狀反應的變因8 1-3. 中空奈米材料的介紹14 1-3-1. 中空奈米材料之製備16 1-3-2. 物理性擴散法17 1-3-3. 再溶解法(Ostwald ripening)18 1-4. 核磁共振造影技術19 1-5. 動物明膠的簡介24 1-6. 磷化氫的介紹25 第二章 實驗部分27 2-1. 實驗藥品28 2-1-1. 實驗(MnFe2O4中空奈米球、MnFe2O4奈米管與Mn3O4奈米桿的合成 及應用)需要之化學藥品28 2-1-2. 實驗(Cu2O奈米線與CuO孔洞奈米球的合成及應用)需要之化學品28 2-1-3. 實驗(合成均勻性高的In2O3奈米方塊)需要之化學藥品28 2-2. 實驗合成步驟29 2-2-1. MnFe2O4中空奈米球、MnFe2O4奈米管與Mn3O4奈米桿之合成與鑑定29 2-2-1-1. MnFe2O4中空奈米球合成步驟29 2-2-1-2. MnFe2O4奈米管合成步驟31 2-2-1-3. Mn3O4奈米桿合成步驟32 2-2-1-4. A549癌細胞培養與細胞毒性測試33 2-2-2. Cu2O奈米線與CuO孔洞奈米球之合成34 2-2-2-1. Cu2O奈米線合成步驟34 2-2-2-2. CuO奈米孔洞球合成步驟35 2-2-3. In2O3奈米方塊之合成36 2-3. 鑑定儀器38 2-3-1. 穿透式電子顯微鏡 (Transmission Electron Microscopy ; TEM)38 2-3-2. 熱重分析儀 (Thermogravimetric analysis;TGA)38 2-3-3. 氮氣等溫吸附-脫附測量 (N2 adsorption/desorption isotherm)38 2-3-4. 掃描式電子顯微鏡 (Scanning Electron Microscopy;SEM)38 2-3-5. X-射線粉末繞射光譜 (Powder X-Ray Diffraction)39 2-3-6. 利用能量分散光譜 (Energy Dispersive X-ray Spectrometer,EDX或EDS)39 2-3-7. 霍氏紅外線光譜儀 (Fouries Transform Infrared;IR):Bomem MB155 FT-IR/Roman40 2-3-8. 超導量子干涉磁量儀 (Superconducting Quantum Interference Device Magnetometer)40 2-3-9. 磁共振造影儀 (magnetic resonance spectroscopy,簡稱MR)40 2-3-10. X光電子能譜儀 (X-ray photoelectron spectrometer,簡稱ESCA或XPS)41 第三章 MnFe2O4中空奈米球、MnFe2O4奈米管與Mn3O4奈米桿的合成及應用42 3-1. 研究動機43 3-2. MnFe2O4中空奈米球45 3-2-1. 推測MnFe2O4中空奈米球反應機制51 3-2-2. 反應溫度對產物的影響56 3-2-3. 改變水量對產物的影響58 3-2-4. 改變溶劑對產物型態的影響61 3-3. MnFe2O4奈米管62 3-3-1. MnFe2O4奈米管毒性測試66 3-3-2. 推測MnFe2O4奈米管反應機制67 3-3-3. 改變溶劑對產物的影響72 3-3-4. MnFe2O4奈米管MRI顯影效果研究74 3-4. Mn3O4奈米桿75 3-4-1. Mn3O4奈米桿MRI顯影效果研究76 第四章 Cu2O奈米線與CuO孔洞奈米球的合成及應用78 4-1. 研究動機79 4-2. Cu2O奈米線80 4-2-1. 推測Cu2O奈米線反應機制84 4-2-2. 改變結構導向試劑對產物的影響88 4-2-3. 反應溫度對產物的影響90 4-2-4. 改變gelatin B劑量對產物的影響…92 4-3. CuO奈米球96 4-3-1. 反應時間與改變gelatin B劑量對產物的影響100 第五章 合成均勻性高的In2O3奈米方塊103 5-1. 研究動機104 5-2. In2O3奈米方塊106 5-2-1. 推測In2O3奈米方塊反應機制107 5-2-2. 反應溫度對於In2O3奈米方塊的影響109 第六章 結論111 參考文獻113

    1. K. L. Kelly, E. Coronado, L. L. Zhao, Schatz, J. Phys. Chem. B. 2003, 107, 668.
    2. M. A. El-Sayed, Z. L. Wang, J. Phys. Chem. B. 1998, 102, 6145.
    3. 莊萬發 超微粒子理論與應用, 復漢出版社, 1994.
    4. M. T. Hsiao, S. F. Chen, D. B. Shieh, C. S. Yeh, J. Phys. Chem. B. 2006, 110, 205.
    5. S. M. Lee, S. N. Cho, J. Cheon, Adv. Mater. 2003, 15, 441.
    6. Y. Xia, Y. Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, Adv.
    Mater. 2003, 15, 353.
    7. 馬振基 奈米材料科技原理與應用, 全華科技圖書股份有限公司, 2003.
    8. R. I. Walton, Chem. Soc. Rev. 2002, 31, 230.
    9. K. B. Tang, Y. T. Qian, J. H. Zeng, X. G. Yang, Adv. Mater. 2003, 15, 448.
    10. 林孟萱, “Ag-SrTiO3 奈米核-殼結構粒子之研究與製備”, 中原大學化學系碩士學位論文, 2003.
    11. D. J. Watson, C. A. Randall, Am. Ceram. Soc. Inc. 1988, 1, 154.
    12. S. H. Yu, J. Yang, Z. H. Han, Y. Zhou, R. Y. Yang, Y. T. Qian, Y.H. Zhang, J. Mater. Chem. 1999, 9, 1283.
    13. Y. W. Jun, J. H. Lee, J. S. Choi, J. J. Cheon, J. Phys. Chem. B. 2005, 109, 14795.
    14. J. Zhang, L. D. Sun, J. L. Yin, H. L. Su, C. S. Liao, C. H. Yan, Chem. Mater. 2002, 14, 4172.
    15. C. Pacholski, A. Kornowski, H. Weller, Angew. Chem. Int. Ed. 2002, 41, 1188.
    16. J. F. Banfield, S. A. Welch, H. Zhang, T. T. Ebert, R. L. Penn, Science. 2000, 289, 751.
    17. R. L. Penn, J. F. Banfield, Science. 1998, 281, 969.
    18. R. L. Penn, J. F. Banfield, Geochim, Cosmochim, Acta, 1999, 63, 1549.
    19. K. Govender, D. S. Boyle, P. B. Kenway, P. O'Brien, J. Mater.Chem. 2004, 14, 2575.
    20. C. H. Gu, V. Y. Jr, J.W. Grant, J. Pharm. Sci. 2001, 90, 1878.
    21. J. H. ter Horst, R. M. Geertman, G. M. van Rosmalen, J. Cryst.Growth. 2001, 230, 277.
    22. X. Peng, J. Wickham, A. P. Alivisatos, J. Am. Chem. Soc. 1998, 120, 5343.
    23. B. M. Wen, C. Y. Liu, Y. Liu, New J. Chem. 2005, 29, 969.
    24. B. Cheng, E. T. Samulski, Chem. Commun. 2004, 986.
    25. H. Chu, X. Li, G. Chen, W. Zhou, Y. Zhang, Z. Jin, J. Xu, Y. Li,Cryst. Growth. Des. 2005, 5, 1801.
    26. H. Zhang, D. Yang, X. Ma, Y. Ji, J. Xu, D. Que, Nanotechnology, 2004, 15, 622.
    27. L. Guo, S Yang, C. Yang, P. Yu, J. Wang, W. Ge, G. K. Wong,Chem. Mater. 2000, 12, 2268.
    28. J. Joo, S. G. Kwon, J. H. Yu, T. Hyeon, Adv. Mater. 2005, 17, 1873.
    29. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, Adv. Mater. 2003, 15, 353.
    30. X. Peng, Adv. Mater. 2003, 15, 459.
    31. H. Zhang, D. Yang, Y. Ji, X. Ma, J. Xu, D. Que, J. Phys. Chem. B. 2004, 108, 3955.
    32. U. Pal, P. Santiago, J. Phys. Chem. B. 2005, 109, 15317.
    33. M. Yang, G. Pang, L. Jiang, S. Feng, Nanotechnology. 2006, 17, 206.
    34. S. Yugang, Y. Xia, Anal. Chem. 2002, 74, 5297.
    35. G. Dmitry, Shchukin, B. Gleb, Angew. Chem. Int. Ed. 2003, 42, 4471.
    36. 林東毅, “奈米容器:具有可控制物質進出之奈米結構”, 國立成功大學化學研究所,2005.
    37. R. K. Iler, J. Colloid Interface Sci. 1966, 21, 569.
    38. F. Caruso, R. A. Caruso, H. Mohwald, Science. 1998, 282, 1111.
    39. F. Caruso, Adv. Mater. 2001, 13, 11.
    40. S. Yugang, Y. Xia, Anal. Chem. 2002, 74, 5297.
    41. B. B. Lakshmi, C. J. Patrissi, C. R. Martin, Chem. Mater. 1997, 9, 2544.
    42. Y. Yin, R. M. Rioux, C. K. Erdonmez, S. Hughes, G. A. Somorjai, A. P. Alivisatos, Science. 2004, 304, 711.
    43. H. J. Fan, U. Gêsele, M. Zacharias, Small. 2007, 3, 1660.
    44. A. D. Smigelskas, E. O. Kirkenall, Trans. AIME. 1947, 171, 130.
    45. Y. Chang, M. L. Lye, H. C. Zen, Langmuir. 2005, 21, 3746.
    46. S. Peng, S. Sun, Angew. Chem. Int. Ed. 2007, 46, 4155.
    47. H. G. Yang, H. C. Zeng, J. Phys. Chem. B. 2004, 108, 3492.
    48. http://en.wikipedia.org/wiki/Ostwald_ripening
    49. Y. Chang, J. T. Teo, H. C. Zeng, Langmuir. 2005, 21, 1074.
    50. C. J. Jia, L. D. Sun, Z. D. Yan, L. P. You, F. Luo, X. D. Han, Y. C. Pang, P. Z. Zhang, C. H. Yan, Angew. Chem. Int. Ed. 2005, 44, 4328.
    51. J. Li, H. C. Zeng, J. Am. Chem. Soc. 2007, 129, 15839.
    52. M. G. Harisinghani, J. Barentsz, P. F. Hahn, W. M. Deserno, S. Tabatabaei, C. H. van deKaa, J. de la Rosette, R. Weissleder, N. Engl. J. Med. 2003, 348, 2491.
    53. Y. w. Jun, Y. M. Huh, J. s. Choi, J. H. Lee, H. T. Song, S. j. Kim, S. Yoon, K. S. Kim, J. S. Shin, J. S. Suh, J. Cheon, J. Am. Chem. Soc. 2005, 127, 5732.
    54. B. Bonnemain, J. Drug Target 1998, 6, 167.
    55. C. W. Jung, Magn. Reson. Imaging 1995, 13, 675.
    56. P. C. Wu, W. S. Wang, Y. T. Huang, H. S. Shen, Y. W. Lo, T. L. Tsai, D. B. Shieh, C. S. Yeh, Chem. Eur. J. 2007, 13, 3878.
    57. Y. W. Jun, Y. M. Huh, J. S. Choi, J. H. Lee, H. T. Song, S. J. Kim, S. Yoon, K. S. Kim, J. S. Shin, J. S. Suh, J. Cheon, J. Am. Chem. Soc. 2005, 127, 5732.
    58. J. H. Lee, Y. M. Huh, Y. Jun, J. Seo, J. Jang, H. T. Song, S. Kim, E. J. Cho, H. G. Yoon, J. S. Suh, J. Cheon, Nat. Med. 2007, 13, 95.
    59. F. Y. Chang, Y. S. Yang, W. H. Huang, C. S. Yeh, C. Y. Tsai, C. L. Wu, D. B. Shieh, Biomaterials 2005, 26, 729.
    60. C. H. Su, H. S. Sheu, C. Y. Lin, C. C. Huang, Y. W. Lo, Y. C. Pu, J. C. Weng, D. B. Shieh, J. H. Chen, C. S. Yeh, J. Am. Chem. Soc. 2007, 129, 2139.
    61. geltech.co.kr
    62. http://www.gmap-gelatin.com/about_gelatin_phys.html

    下載圖示 校內:2013-08-18公開
    校外:2013-08-18公開
    QR CODE