研究生: |
張夢臣 Chang, Mong-Chen |
---|---|
論文名稱: |
以溶熱法製備各種金屬氧化物奈米材料之研究 A Study on the Solvothermal Synthesis of Different Metal Oxide Nano Materials |
指導教授: |
林弘萍
Lin, Hong-Ping |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 116 |
中文關鍵詞: | 溶熱法 、水熱法 、氧化物 、磁鐵礦 、氧化銅 、氧化亞銅 、氧化銦 |
外文關鍵詞: | solvothermal synthesis, metal oxide, magnesium ferrite, MnFe2O4, hollow, nanosphere, nanotube, Kirkendall effect, magnetic resonance imaging, Cu2O, nanowire, CuO, porous, gelatin, phosphine, In2O3, cubic, monodispersed |
相關次數: | 點閱:94 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文以溶熱法合成各類金屬氧化物奈米材料,並分成三個部分,探討不同的奈米金屬氧化物不同的合成組成及應用領域。第一部分為以溶熱法合成MnFe2O4中空奈米球、MnFe2O4奈米管與Mn3O4奈米桿等磁性材料及這些材料在核磁共振造影(MRI)上的應用。第二部分為以水熱法合成Cu2O奈米線與CuO孔洞奈米球及這些材料在磷化氫(PH3)之氣體感測器上的應用。第三部分為以溶熱法合成In2O3奈米方塊及其型態轉變機構的探討。
第一部分 MnFe2O4中空奈米球、MnFe2O4奈米管與Mn3O4奈米桿的合成及應用
本部分實驗以硬酯酸根為capping agent,先合成出硬酯酸之金屬離子前驅物,再以正辛醇(1-octanol)為溶劑,並加入少量的去離子水後,以高壓釜進行溶熱法;隨著產物中Mn / Fe比例的改變,可合成出中空奈米球及奈米管,經由時間參數的探討,其形成機構為Kirkendall effect的物理擴散過程,且此兩種材料皆具有內外層的雙表面積,並在常溫下皆屬於超順磁,故在核磁共振造影上的應用,除了可以增加顯影劑與水的接觸表面積,也對T2*-weighted核磁造影,有較大的對比程度;此外,在探討MnFe2O4奈米管之反應機制時,合成出具均勻性與分散性的Mn3O4奈米桿,並探討其基本物理化學性質。
第二部分 Cu2O奈米線與CuO孔洞奈米球的合成及應用
本實驗使用明膠(gelatin)來做為結構導向試劑(structure-directing agent),並以醋酸銅水溶液為銅的來源,進行水熱反應,並藉由高壓釜(autoclave)高溫高壓水熱或P.P 瓶100℃水熱等兩種不同合成方式,分別合成出具特殊結構的Cu2O奈米線與具高表面積以及孔洞性的CuO孔洞奈米球,並且可藉由調整反應時間和反應溫度來改變產物中氧化銅、氧化亞銅與金屬銅間的比例,藉此合成出Cu2O / CuO / Cu複合材料。在應用方面則是這些材料在磷化氫之氣體感測上的應用。
第三部分 合成均勻性高的In2O3奈米方塊
本章節延用第一部份的方法,應用在不同的金屬氧化物上。首先,先合成出硬酯酸銦為金屬前驅物,以正辛醇為溶劑,並加入少量水後,以高壓釜進行溶熱法。所合成的產物為顆粒大小均勻的In2O3奈米方塊,除了探討基本物理化學性質外,也藉由改變反應時間,研究型態轉變之反應機制。
Part 1. Synthesis of magnetic nanomaterials
Of the methods employed in the preparation of magnesium ferrite (MnFe2O4) nanomaterials, the thermal decomposition and co-precipitation have been mainly used as a synthetic route. In this study, hollow shaped magnesium ferrite (MnFe2O4) nanoparticles were obtained from a one-pot solvothermal treatment on a mixture of iron stearate (Fe(SA)3) and magnesium stearate (Mn(SA)2) in the 1-octanol solution at 240℃. By adjusting the ratio of Fe to Mn from 2:1 to 1:1, the morphologies of the resulted MnFe2O4 nanoparticles transfer from hollow nanospheres to nanotubes. Time-dependent observation indicated that the proposed hollowing mechanism is followed with a physical diffusion process (Kirkendall effect). TEM, XRD, FT-IR, and XPS measurements were carried out to characterize the prepared samples. The magnetization measurements including ZFC-FC curves and magnetization vs. H/T as well as their usefulness for in vitro magnetic resonance (MR) imaging were investigated for both hollow MnFe2O4 nanospheres and nanotubes. On the basis of in-vitro MR assays, MnFe2O4 nanotubes were found to have negative-contrast ability for MR images.
Part 2. Preparation of Cu2O Nanowires and CuO Porous Nanospheres
Cu2O nanowires and CuO porous nanospheres were prepared via a one-pot hydrothermal route by using the gelatin type B as structure-directing agent and copper acetate aqueous solution as copper source. By adjusting reaction time and reaction temperature, the composition of those materials could be controllable. The composites of the resulted CuO-Cu2O-Cu nanomaterials would be feasible. In practical applications, the Cu2O nanowires and CuO porous nanospheres could be potentially useful for the gas detection of phosphine.
Part 3. Synthesis of monodispersed indium oxide cubic nanoparticles
Nearly monodispersed cubic indium oxide (In2O3) were prepared by a one-pot solvothermal route using indium stearate (In(SA)3) as the In2O3 precursor in 1-octanol at 240oC. By changing the reaction time, the size of cubic indium oxide would be tunable. The indium oxide cubic nanoparticles could be used as the electrode substrate in DSSC (dye-sensitized solar cell).
1. K. L. Kelly, E. Coronado, L. L. Zhao, Schatz, J. Phys. Chem. B. 2003, 107, 668.
2. M. A. El-Sayed, Z. L. Wang, J. Phys. Chem. B. 1998, 102, 6145.
3. 莊萬發 超微粒子理論與應用, 復漢出版社, 1994.
4. M. T. Hsiao, S. F. Chen, D. B. Shieh, C. S. Yeh, J. Phys. Chem. B. 2006, 110, 205.
5. S. M. Lee, S. N. Cho, J. Cheon, Adv. Mater. 2003, 15, 441.
6. Y. Xia, Y. Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, Adv.
Mater. 2003, 15, 353.
7. 馬振基 奈米材料科技原理與應用, 全華科技圖書股份有限公司, 2003.
8. R. I. Walton, Chem. Soc. Rev. 2002, 31, 230.
9. K. B. Tang, Y. T. Qian, J. H. Zeng, X. G. Yang, Adv. Mater. 2003, 15, 448.
10. 林孟萱, “Ag-SrTiO3 奈米核-殼結構粒子之研究與製備”, 中原大學化學系碩士學位論文, 2003.
11. D. J. Watson, C. A. Randall, Am. Ceram. Soc. Inc. 1988, 1, 154.
12. S. H. Yu, J. Yang, Z. H. Han, Y. Zhou, R. Y. Yang, Y. T. Qian, Y.H. Zhang, J. Mater. Chem. 1999, 9, 1283.
13. Y. W. Jun, J. H. Lee, J. S. Choi, J. J. Cheon, J. Phys. Chem. B. 2005, 109, 14795.
14. J. Zhang, L. D. Sun, J. L. Yin, H. L. Su, C. S. Liao, C. H. Yan, Chem. Mater. 2002, 14, 4172.
15. C. Pacholski, A. Kornowski, H. Weller, Angew. Chem. Int. Ed. 2002, 41, 1188.
16. J. F. Banfield, S. A. Welch, H. Zhang, T. T. Ebert, R. L. Penn, Science. 2000, 289, 751.
17. R. L. Penn, J. F. Banfield, Science. 1998, 281, 969.
18. R. L. Penn, J. F. Banfield, Geochim, Cosmochim, Acta, 1999, 63, 1549.
19. K. Govender, D. S. Boyle, P. B. Kenway, P. O'Brien, J. Mater.Chem. 2004, 14, 2575.
20. C. H. Gu, V. Y. Jr, J.W. Grant, J. Pharm. Sci. 2001, 90, 1878.
21. J. H. ter Horst, R. M. Geertman, G. M. van Rosmalen, J. Cryst.Growth. 2001, 230, 277.
22. X. Peng, J. Wickham, A. P. Alivisatos, J. Am. Chem. Soc. 1998, 120, 5343.
23. B. M. Wen, C. Y. Liu, Y. Liu, New J. Chem. 2005, 29, 969.
24. B. Cheng, E. T. Samulski, Chem. Commun. 2004, 986.
25. H. Chu, X. Li, G. Chen, W. Zhou, Y. Zhang, Z. Jin, J. Xu, Y. Li,Cryst. Growth. Des. 2005, 5, 1801.
26. H. Zhang, D. Yang, X. Ma, Y. Ji, J. Xu, D. Que, Nanotechnology, 2004, 15, 622.
27. L. Guo, S Yang, C. Yang, P. Yu, J. Wang, W. Ge, G. K. Wong,Chem. Mater. 2000, 12, 2268.
28. J. Joo, S. G. Kwon, J. H. Yu, T. Hyeon, Adv. Mater. 2005, 17, 1873.
29. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, Adv. Mater. 2003, 15, 353.
30. X. Peng, Adv. Mater. 2003, 15, 459.
31. H. Zhang, D. Yang, Y. Ji, X. Ma, J. Xu, D. Que, J. Phys. Chem. B. 2004, 108, 3955.
32. U. Pal, P. Santiago, J. Phys. Chem. B. 2005, 109, 15317.
33. M. Yang, G. Pang, L. Jiang, S. Feng, Nanotechnology. 2006, 17, 206.
34. S. Yugang, Y. Xia, Anal. Chem. 2002, 74, 5297.
35. G. Dmitry, Shchukin, B. Gleb, Angew. Chem. Int. Ed. 2003, 42, 4471.
36. 林東毅, “奈米容器:具有可控制物質進出之奈米結構”, 國立成功大學化學研究所,2005.
37. R. K. Iler, J. Colloid Interface Sci. 1966, 21, 569.
38. F. Caruso, R. A. Caruso, H. Mohwald, Science. 1998, 282, 1111.
39. F. Caruso, Adv. Mater. 2001, 13, 11.
40. S. Yugang, Y. Xia, Anal. Chem. 2002, 74, 5297.
41. B. B. Lakshmi, C. J. Patrissi, C. R. Martin, Chem. Mater. 1997, 9, 2544.
42. Y. Yin, R. M. Rioux, C. K. Erdonmez, S. Hughes, G. A. Somorjai, A. P. Alivisatos, Science. 2004, 304, 711.
43. H. J. Fan, U. Gêsele, M. Zacharias, Small. 2007, 3, 1660.
44. A. D. Smigelskas, E. O. Kirkenall, Trans. AIME. 1947, 171, 130.
45. Y. Chang, M. L. Lye, H. C. Zen, Langmuir. 2005, 21, 3746.
46. S. Peng, S. Sun, Angew. Chem. Int. Ed. 2007, 46, 4155.
47. H. G. Yang, H. C. Zeng, J. Phys. Chem. B. 2004, 108, 3492.
48. http://en.wikipedia.org/wiki/Ostwald_ripening
49. Y. Chang, J. T. Teo, H. C. Zeng, Langmuir. 2005, 21, 1074.
50. C. J. Jia, L. D. Sun, Z. D. Yan, L. P. You, F. Luo, X. D. Han, Y. C. Pang, P. Z. Zhang, C. H. Yan, Angew. Chem. Int. Ed. 2005, 44, 4328.
51. J. Li, H. C. Zeng, J. Am. Chem. Soc. 2007, 129, 15839.
52. M. G. Harisinghani, J. Barentsz, P. F. Hahn, W. M. Deserno, S. Tabatabaei, C. H. van deKaa, J. de la Rosette, R. Weissleder, N. Engl. J. Med. 2003, 348, 2491.
53. Y. w. Jun, Y. M. Huh, J. s. Choi, J. H. Lee, H. T. Song, S. j. Kim, S. Yoon, K. S. Kim, J. S. Shin, J. S. Suh, J. Cheon, J. Am. Chem. Soc. 2005, 127, 5732.
54. B. Bonnemain, J. Drug Target 1998, 6, 167.
55. C. W. Jung, Magn. Reson. Imaging 1995, 13, 675.
56. P. C. Wu, W. S. Wang, Y. T. Huang, H. S. Shen, Y. W. Lo, T. L. Tsai, D. B. Shieh, C. S. Yeh, Chem. Eur. J. 2007, 13, 3878.
57. Y. W. Jun, Y. M. Huh, J. S. Choi, J. H. Lee, H. T. Song, S. J. Kim, S. Yoon, K. S. Kim, J. S. Shin, J. S. Suh, J. Cheon, J. Am. Chem. Soc. 2005, 127, 5732.
58. J. H. Lee, Y. M. Huh, Y. Jun, J. Seo, J. Jang, H. T. Song, S. Kim, E. J. Cho, H. G. Yoon, J. S. Suh, J. Cheon, Nat. Med. 2007, 13, 95.
59. F. Y. Chang, Y. S. Yang, W. H. Huang, C. S. Yeh, C. Y. Tsai, C. L. Wu, D. B. Shieh, Biomaterials 2005, 26, 729.
60. C. H. Su, H. S. Sheu, C. Y. Lin, C. C. Huang, Y. W. Lo, Y. C. Pu, J. C. Weng, D. B. Shieh, J. H. Chen, C. S. Yeh, J. Am. Chem. Soc. 2007, 129, 2139.
61. geltech.co.kr
62. http://www.gmap-gelatin.com/about_gelatin_phys.html