| 研究生: |
郭東益 Kuo, Dong-Yih |
|---|---|
| 論文名稱: |
腦內Y型神經胜肽在「安非他命的厭食作用」所扮演之角色 Role of Cerebral Neuropeptide Y (NPY) in the Anorectic Action Induced by Repeated Treatment of Amphetamine |
| 指導教授: |
鄭瑞棠
Cheng, Juei-Tang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 基礎醫學研究所 Institute of Basic Medical Sciences |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | Y型神經胜肽(NPY) 、安非他命 、厭食作用 、D1及D2受體 |
| 外文關鍵詞: | Amphetamine, Neuropeptide Y, Anorexia, D1/D2 rec |
| 相關次數: | 點閱:65 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
安非他命(amphetamine, AMPH)是著名的厭食劑(anorectic agent),而腦內的Y型神經胜肽(neuropeptide Y, NPY)則可增進食慾。AMPH的厭食作用,是否透過腦內NPY的調控?目前則仍未明。因此,本論文希望以此為探討的主題。
AMPH首次給藥時,可使大白鼠產生顯著的厭食作用,此時,下視丘NPY的含量也隨著減少;這項減少可由下視丘NPY的免疫染色(immunostaining)也看到。由此可知,腦內的NPY參與著AMPH的厭食作用。可是,AMPH若持續給藥時,則厭食作用會逐漸回復正常;本文稱此為「厭食耐受性(tolerant anorexia)」。這項厭食耐受性的產生也與腦內的NPY有關,因為:(1)厭食耐受性產生時,下視丘NPY的濃度會回復到正常。(2)NPY antisense注入側腦室時,可延緩厭食耐受性的形成。(3)腦內NPY過度表現時,可加速厭食耐受性的形成。
另一方面,AMPH會造成腦內NPY含量的改變,與腦內釋放的dopamine (DA) 去同時活化D1及D2 receptor有關。因為:(1) 使用D1或D2 blocker,均能阻斷AMPH的厭食作用。(2)使用a-methyl-p-tyrosine (tyrosine hydroxylase的 inhibitor),可減少腦內DA的含量,並可加速AMPH厭食耐受性之形成。但是,使用nomifensine (DA reuptake 的inhibitor),則可減緩之。(3) D1及D2 agonists合併給藥時,就能產生AMPH-like的作用。可是,D1或D2 agonist單獨給藥時,卻不能。(4)腦內NPY過度表現時,可減弱「D1及D2 agonists合併給藥」的厭食作用。
此外,AMPH厭食耐受性的形成,與血漿中insulin、leptin、glucocorticoid及glucose等似乎無關,因為:(1)血漿中insulin、 leptin及glucose濃度,在AMPH持續注射的動物並未改變。(2)腎上腺摘除的大白鼠,對AMPH厭食作用的反應,與假手術的大白鼠比較,並無差異;顯示glucocorticoid並未參與。
綜合以上結果,得知:腦內的NPY參與著AMPH的「厭食作用」及「厭食耐受性」之形成;這兩項作用與腦內釋放的DA去同時活化D1及D2 receptor有關。
Amphetamine (AMPH) is known as an anorectic agent. Cerebral neuropeptide Y (NPY) is an appetite stimulant. The aim of the present study is to investigate whether cerebral NPY is involved in the anorectic action of AMPH.
Rats given with AMPH produced an anorectic effect and a reduction of hypothalamic NPY contents. This reduction of NPY was also observed in the area of hypothalamic PVN by the immunocytochemical staining. These results revealed that cerebral NPY was involved in AMPH anorexia. However, rats given repeatedly with AMPH produced a reversion of food intake to normal (tolerant anorexia). Cerebral NPY was also involved in the induction of tolerant anorexia, due to (1) the reversion of hypothalamic NPY content was observed in rats with tolerant anorexia and (2) the induction of tolerant anorexia was inhibited by NPY antisense injected into brain and was promoted in transgenic mice with NPY over expression.
Changes of NPY content by AMPH treatment were related to the cerebral released dopamine (DA) that co-activated D1 and D2 receptors. This was obtained from the facts that: (1) both D1 and D2 blockers inhibited AMPH-induced anorexia; (2) AMPH-induced tolerant anorexia was attenuated by a-methyl-p-tyrosine, the tyrosine hydroxylase inhibitor, but was increased by nomifensine, the DA reuptake inhibitor; (3) repeated treatment of D1/D2 agonists, but not D1 or D2 agonist alone, induced AMPH-like anorectic action; and (4) NPY over expression in mice reduced the D1/D2 agonist-induced anorexia.
AMPH-induced tolerant anorexia was not related with the changes by plasma insulin, leptin, glucose and glucocorticoid. Plasma insulin, leptin or glucose remained no change during AMPH repeated treatment. The anorectic action of AMPH in adrenolectomized rats was the same as that of sham-operated control indicating there was no involvement of plasma glucocorticoid.
In conclusion, it is suggested that cerebral NPY is involved in both the anorectic action and the tolerant anorexia induced by AMPH depending on the cerebral release of DA that can co-activate D1 and D2 receptors.
參考文獻
Aja, S.M., Chan, P., Barrett, J.A. and Gietzen, D.W. (1999). DA1 receptor activity opposes anorectic responses to amino acid-imbalanced diets. Pharmacol. Biochem. Behav. 62, 493-498.
Akabayashi, A., Wahlestedt, C., Alexander, J.T. and Leibowitz, S.F. (1994). Specific inhibition of endogenous neuropeptide Y synthesis in arcuate nucleus by antisense oligonucleotide suppresses feeding behavior and insulin secretion. Mol. Brain Res. 21, 55-61.
Allen, J.M., Yeats, J.C., Adrian, T.E. and Bloom, S.R. (1984). Radioimmunoassay of neuropeptide Y. Regul. Peptides 8, 61-70.
Allen, Y.S., Adrain, T.E., Allen, J.M., Tatemoto, K., Crow, T.J., Bloom, S.R. and Polak. J.M. (1983). Neuropeptide Y distribution in the rat brain. Science 221, 877-879.
Amt, J., Hyttel, J. and Perregaard, L. (1987). Dopamine D1 receptor agonists combined with quinpirole facilitate the expression of oral stereotyped behavior in rats. Eur. J. Pharmacol. 133, 137-145.
Antelman, S.M., Caggiula, A.R., Knopf, S., Kocan, D.J. and Edwards, D.J. (1992). Amphetamine or haloperidol 2 weeks earlier antagonized the plasma corticosterone response to amphetamine: evidence for the stressful/foreign nature of drugs. Psychopharmacology 107, 331-336.
Baptista, T., Parada, M. and Hernandez, L. (1987). Long-term administration of some antipsychotic drugs increases body weight and feeding in rats. Are D2 dopamine receptors involved? Pharmacol. Biochem. Behav. 27, 399-405.
Bhakthavatsalam, P., Kamatchi, G.L. and Ghosh, M.N. (1985). Tolerance pattern to amphetamine anorexia after selective lesion in the hypothalamic dopaminergic projection. Life Sci. 37, 635-643.
Biel, J.H. and Bopp, B.A. (1978). Amphetamine: Structure-activity relationship. In Handbook of psychopharmacology. Iversen, L.L., Iversen, S.D., and Snyder S.H. eds. New York: Plenum Press, pp. 1-39.
Billington, C.J., Briggs, J.E., Harker, S., Grace, M. and Levine, A.S. (1994). Neuropeptide Y in hypothalamic paraventricular nucleus: a center coordinating energy metabolism. Am. J. Physiol. 266, R1765-R1770.
Blundell, J.E. and Latham, C.J. (1980). Characterization of adjustments to the structure of feeding behavior following pharmacological treatment: effects of amphetamine and fenfluramine and the antagonism produced by pimozide and methergoline. Pharmacol. Biochem. Behav. 12, 717-722.
Buwalda, B., Strubbe, J.H., Hoes, M.W. and Bohus, B. (1991). Reduced preabsorptive insulin response in aged rats: differential effects of amphetamine and arginine-vasopressin. J. Auton. Nerv. Syst. 36, 123-128.
Carlton, P.L. and Wolgin, D.L. (1971). Contingent tolerance to the anorexigenic effects of amphetamine. Physiol. Behav. 7, 221-223.
Chen, S.T., Shen, C.L., Wang, J.P. and Chou, L.S. (1999). A comparative of neuropeptide Y-immunoreactivity in the retina of dolphin and several other mammalian species. Zool. Stud. 38, 416-422.
Chen, T.Y., Duh, S.L., Huang, C.C., Lin, T.B. and Kuo, D.Y. (2001). Evidence for the involvement of dopamine D1 and D2 receptors in mediating the decrease of food intake during repeated treatment with amphetamine. J. Biomed. Sci. 8, 462-466.
Chronwall, B.M., Dimaggio, D.A., Massari, V.J., Pickel, V.M., Ruggiero, D.A. and O‘Donohue, T.L. (1985). The anatomy of neuropeptide Y -containing neurons in the rat brain. J. Neurosci. 15, 1159-1181.
Clark, J.T., Kalra, P.S., Crowley, W.R. and Kalra, S.P. (1984). Neuropeptide Y and human pancreatic polypeptide stimulate feeding behavior in rats. Endocrinology 115, 427-429.
Cooper, J.R., Bloom, F.E. and Roth, R.H. (1996). Dopamine. In The biochemical basis of neuropharmacology. Cooper, J.R. ed. New York: Oxford University Press, pp.317-321.
Crooke, S.T. and Bennett, C.F. (1996). Progress in antisense oligonucleotide therapeutics. Annu. Rev. Pharmacol. Toxicol. 36, 107-129.
Currie, P.J. and Coscina, D.V. (1995). Dissociated feeding and hypothermic effects of neuropeptide Y in the paraventricular and perifornical hypothalamus. Peptides 16, 599-604.
Demellweek, C. and Goudie, A.J. (1983). An analysis of behavioral mechanisms involved in the acquisition of amphetamine anorectic tolerance. Psychopharmacology 79, 58-66.
De Quidt, M.E. and Emson, P.C. (1986). Distribution of neuropeptide Y-like immunoreactivity in the rat central nervous system. Ⅱ. Immunohistohemical analysis. Neuroscience 18, 545-618.
Dryden, S., Frankish, H.M., Wang, Q. and Williams, G. (1994). Neuropeptide Y and energy balance: One-way ahead of for the treatment of obesity? Eur. J. Clin. Invest. 24, 293-308.
Elmquist, J.K., Elias, C.F. and Saper, C.B. (1999). From lesions to leptin: hypothalamic control of food intake and body weight. Neuron 22, 221-232.
Ersner, J.S. (1940). The treatment of obesity due to dietary indiscretion (over-eating) with Benzedrine sulfate. Endocrinology 27, 776-780.
Everitt, B.J., Hökfelt, T., Tatemoto, K., Mutt, V. and Goldstein, M. (1984). Differential co-existence of neuropeptide Y (NPY)-like immunoreactivity with catecholamines in the central nervous system of the rat. Neuroscience 11, 443-462.
Flier, J.S. and Marantos-Flier, E. (1998). Obesity and the hypothalamus: novel peptides for new pathways. Cell 92, 437-440.
Foltin, R.W. (2000). Effects of amphetamine on food and fruit drink self-administration. Exp. Clinic. Psychopharmacol. 8, 37-46.
Foltin, R.W., Kelly, T.H. and Fischman, M.W. (1995). Effect of amphetamine on human macronutrient intake. Physiol. Behav. 58, 899-907.
Fraioli, S., Cioli, I. and Nencini, P. (1997). Amphetamine reinstates polydipsia induced by chronic exposure to quinpirole, a dopaminergic D2 agonist, in rats. Behav. Brain Res. 89, 199-215.
Frankish, H.M., Dryden, S., Hopkins, D., Wang, Q. and Williams, G. (1995). Neuropeptide Y, the hypothalamus and diabetes: Insights into the control of metabolism. Peptides 16, 757-771.
Fumagalli, F., Gainetdinov, R.R., Valenzano, K.J. and Caron, M.G. (1998). Role of dopamine transporter in methamphetamine-induced neurotoxicity: evidence from mice lacking the transporter. J. Neurosci. 18, 4861-69.
Geselowitz , D.A. and Neckers, L.M. (1992). Analysis of oligonucleotide binding, internalization and intracellular trafficking utilizing a novel radiolabeled crosslinker. Antisense Res. Dev. 2, 17-23.
Gilbert, D.B. and Cooper, S.J. (1985). Analysis of dopamine D1 and D2 receptor involvement in d- and l-amphetamine-induced anorexia in rats. Brain Res. Bull. 15, 383-389.
Gillard, E.R., Dang, D.Q. and Stanley, B.G. (1993). Evidence that neuropeptide Y and dopamine in the perifornical hypothalamus interact antagonistically in the control of food intake. Brain Res. 628, 128-136.
Heikkila, R.E., Orlansky, H., Mytilineou, C. and Cohen, G. (1975). Amphetamine: Evaluation of d- and l-isomers as releasing agents and reuptake inhibitors for 3H-dopamine and 3H-norepinephrine in slices of rat neostriatum and cerebral cortex. J. Pharmacol. Exp. Ther. 193, 47-56.
Hisano, S., Kagotani, Y., Tsuruo, Y., Daikoku, S., Chihara, K. and Whitnall, M.H. (1988). Localization of glucocorticoid receptor in neuropeptide Y-containing neurons in the arcuate nucleus of the rat hypothalamus. Neurosci. Lett. 95, 13-18.
Hökfelt, T., Lundberg, J.M., Tatemoto, K., Mutt, V., Terenius, L., Polak, J., Bloom, S., Sasek, C., Elde, R. and Goldstein, M. (1983). Neuropeptide Y (NPY)- and FMRFamide neuropeptide-like immunoreactivity in catecholamine neurons of the rat medulla oblongata. Acta Physiol. Scand. 117, 315-318.
Hornykiewicz, O. (1966). Dopamine (3-hydroxytyramine) and brain function. Pharmacol. Rev. 18, 925-964.
Hunt, P., Kannengiesser, M.H. and Raynaud, J.P. (1974). Nomifensine: a new potent inhibitor of dopamine uptake into synaptosomes from rat brain corpus striatum. J. Pharm. Pharmacol. 26, 370-371.
Husley, M.G., Pless, C.M., White, B.D. and Martin, R.J. (1995). ICV administration of anti-NPY antisense oligonucleotide: effects on feeding behavior, body weight, peptide content and peptide release. Regul. Peptides 59, 207-214.
Inui, A., Okita, M., Nakajima, M., Momose, K., Ueno, N., Teranishi, A., Miura, M., Hirosue, Y., Sano, K., Sato, M., Watanabe, M., Sakai, T., Watanabe, T., Ishida, K., Silver, J., Baba, S. and Kasuga, M. (1998). Anxiety-like behavior in transgenic mice with brain expression of neuropeptide Y. Pro. Assn. Am. Physicians 110, 171-182.
Inui, A. (1999). Feeding and body-weight regulation by hypothalamic neuropeptides: mediation of the action of leptin. Trends Neurosci. 22, 62-67.
Inui, A. (2000). Transgenic approach to the study of body weight regulation. Pharmacol. Rev. 52, 35-62.
Joyce, E.M. and Iversen, S.D. (1984). Dissociable effects of 6-OHDA-induced lesions of neostriatum on anorexia, locomotor activity and stereotypy: the role of behavioral competition. Psychopharmacology 83, 363-366.
Kaga, T., Inui, A., Okita, M., Asakawa, A., Ueno, N., Kasuga, M., Fujimiya, M., Nishimura, N., Dobashi, R., Morimoto, Y., Liu, I.M. and Cheng, J.T. (2001). Modest overexpression of neuropeptide Y in the brain leads to obesity after high-sucrose feeding. Diabetes 50, 1206-1210.
Kalra, S.P., Dube, M.G., Sahu, A., Phelps, C.P. and Kalra, P.S. (1991). Neuropeptide Y secretion increases in the paraventricular nucleus in association with increased appetite for food. Proc. Natl. Acad. Sci. USA 88, 10931-10935.
Kalra, S.P., Dube, M.G., Pu, S., Xu, B., Horvath, T.L. and Kalra, P.S. (1999). Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. Endocr. Rev. 20, 68-100.
Kebabian, J.W. and Calne, D.B. (1979). Multiple receptors for dopamine. Nature 277, 93-96.
King, P.J. and Williams, G. (1998). Role of ARC NPY neurons in energy homeostasis. Drug News Perspect 11, 402-410.
Kotz, C.M., Briggs, J.E., Grace, M.K., Levine, A.S. and Billington, C.J. (1998). Divergence of the feeding and thermogenic pathways influenced by NPY in the hypothalamic PVN of the rat. Am. J. Physiol. 275, R471-R477.
Kuczenski, R. and Segal, D.S. (1995). Neurochemistry of amphetamine. In Amphetamine and its analogs: psychopharmacology, toxicology, and abuse. Cho, A.K. and Segal, D.S., eds. San Diego: Academic Press, pp. 81-113.
Kuo, D.Y., Inui, A. and Cheng, J.T. (2002). Effect of repeated treatment of amphetamine on the change of feeding response in NPY overexpressing mice. Neurosci. Lett. 329, 359-361.
Kuo, D.Y. and Cheng J.T. (2002). Role of cerebral dopamine but not plasma insulin, leptin and glucocorticoid in the development of tolerance to the anorectic effect of amphetamine. Neurosci. Res. 44, 63-69.
Kuo, D.Y., Hsu, C.T. and Cheng, J.T. (2001). Role of hypothalamic neuropeptide Y (NPY) in the change of feeding behavior induced by repeated treatment of amphetamine. Life Sci. 70, 243-251.
Lambert, P. D., Wilding, J. P. G., AI-Dochayel, A. A., Bohuon, C., Comoy, E., Gilbey, S,G. and Bloom, S.R. (1993). A role for neuropeptide Y, dynorphin, and noradrenaline in the central control of food intake after food deprivation. Endocrinology 133, 29-32.
Leibowitz, S.F. (1975a). Amphetamine: possible site and mode of action for producing anorexia in the rat. Brain Res. 84, 160-167.
Leibowitz, S.F. (1975b). Catecholaminergic mechanisms of the lateral hypothalamus: their role in the mediation of amphetamine anorexia. Brain Res. 98, 529-545.
Leibowitz, S.F. and Rossakis, C. (1979). Pharmacological characterization of perifornical hypothalamus dopamine receptors mediating feeding inhibition in the rat. Brain Res. 172, 115-130.
Leibowitz, S.F. and Brown, L.L. (1980). Histochemical and pharmacological analysis of catecholaminergic projections to the perifornical hypothalamus in relation to feeding behavior. Brain Res. 201, 315-345.
Leibowitz, S.F. (1992). Neurochemical-neuroendocrine systems in the brain controlling macronutrient intake and metabolism. Trends Neurosci. 15, 491-497.
Levin, B.E. (1999). Arcuate NPY neurons and energy homeostasis in diet-induced obese and resistant rats. Am. J. Physiol. 276, R382–R387.
Lewis, D.E., Shellard, L., Koeslag, D.G., Boer, D.E. and Williams, G. (1993). Intense exercise and food restriction cause similar hypothalamic neuropeptide Y increases in rats. Am. J. Physiol. 264, E279-E284.
Loke, S.L., Stein, C.A., Zhang, X.H., Mori, K., NaKanishi, M., Subasinghe, C., Cohen, J.S. and Neckers, L.M. (1989). Characterization of oligonucleotide transport into livings. Proc. Natl. Acad. Sci. USA 86, 3474-3478.
Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. (1951). Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 265-275.
MacPhail, R.C. and Seiden, L.S. (1976). Effects of intermittent and repeated administration of d-amphetamine on restricted water intake in rats. J. Pharmacol. Exp. Ther. 197, 303-310.
McCabe, J.T., Betran D. and Leibowitz, S.F. (1986). Amphetamine-induced anorexia: Analysis with hypothalamic lesions and knife cuts. Pharmacol. Biochem. Behav. 24, 1047-1056.
Miller, H.H., Shore, P.A. and Clarke, D.E. (1980). In vivo monoamine oxidase inhibition by d-amphetamine. Biochem. Pharmacol. 29, 1347-1354.
Missale, C., Nash, S.R., Robinson, S.W., Jaber, M. and Caron, M.G. (1998). Dopamine receptors: from structure to function. Physiol. Rev. 78, 189-225.
Myers, R.D., Lankford, M.F. and Paez, X. (1992). Norepinephrine, dopamine, and 5-HT release from perfused hypothalamus of the rat during feeding induced by neuropeptide Y. Neurochem. Res. 17, 1123-1132.
Naruse, T., Amano, H. and Koizumi, Y. (1991). Possible involvement of dopamine D-1 and D-2 receptors in diazepam-induced hyperphagia in rats. Fundam. Clin. Pharm. 5, 677-693.
Neicini, P. (1988). The role of opiate mechanisms in the development of tolerance to the anorectic effects of amphetamine. Pharmacol. Biochem. Behav. 30, 755-764.
Neisewander, I.L., Lucki, I. and McGonigle, P. (1996). Changes in behavioral sensitivity to SKF-38393 and quinpirole following withdraw from continuous cocaine administration in rats. Pharmcol. Biochem. Behav. 52, 935-942.
Neuser, V. and Hoffmeister, F. (1977). The influence of psychotropic drugs on the local cerebral glucose utilizationof the rat brain. In CBF Ⅲ - Cerebral function, metabolism and circulation. Ingvar, D.H. and Lassen, N.A. eds. Munksgaard, Copenhagen: Academic Press, pp. 102-103.
Nichols, D.E. (1994). Medicinal chemistry and structure-activity relationships. In Amphetamine and its analogs: psychopharmacology, toxicology, and abuse. Cho, A.K., and Segal, D.S. eds. San Diego: Academic Press, pp.3-41.
Niu, C.S., Chang, T.K. and Cheng, J.T. (1996). Changes of neuropeptide Y (NPY) messenger RNA and peptide by drugs influencing norepinephrine content in cerebrocortex of the rat. J. Neurochem. 66, 2100-2104.
Parada, M.A., Parada, M.P.D., Hernandez, L. and Murzi, E. (1991). Ventromedial hypothalamus vs. lateral hypothalamic D2 satiety receptors in body weight increase induced by systemic sulpiride. Physiol. Behav. 50, 1161-1165.
Paxinos, G. and Watson, C. (1986). The rat brain in stereotaxic coordinates. Sydney Australia: Academic Press, pp. C10-33.
Prinzmetal, M. and Bloomberg, W. (1935). The use of benzedrine for the treatment of narcolepsy. J. Am. Assoc. 105, 2051-2054.
Pizzi, M., Coen, E., Memo, M., Missale, C., Carruba, M.O. and Spano, P.F. (1986). Evidence for the presence of D2 but not D1 dopamine receptors in rat hypothalamic perifornical area. Neurosci. Lett. 67, 159-162.
Ricaurte, G.A., Seiden, L.S. and Schuster, C.R. (1984). Further evidence that amphetamine produce long-lasting dopamine neurochemical deficits by destroying dopamine nerve fibers. Brain Res. 303, 359-364.
Roth, R.H. and Elsworth, J.D. (1994). Biochemical pharmacology of midbrain dopamine neurons. In Psychopharmacology. Bloom, F.E. and Kupfer, D.J., eds. New York: Raven Press, pp. 227-243.
Sahu, A., Sninsky, C.A., Phelps, C.P., Dube, M.G., Kalra, P.S. and Kalra, S.P. (1992). Neuropeptide Y release from the paraventricular nucleus in association with hyperphagia in streptozotocin-induced diabetic rats. Endocrinology 131, 1979-1985.
Samanin, R., Ghezzi, D., Valzelli, L. and Garattini, S. (1972). The effects of selective lesioning of brain serotonin or catecholamines containing neurons on the anorectic activity of fenfluramine and amphetamine. Eur. J. Pharmacol. 19, 318-322.
Schuster, C.R. and Johanson, C.E. (1985). Efficacy, dependence potential and neurotoxicity of anorectic drugs. In Behavioral Pharmacology: the Current Status. Seiden L.S., and Balster R.L., eds. New York: Alan R. Liss Press, pp.263-279.
Seiden, L.S., Sabol, K.E. and Ricaurte, G.A. (1993). Amphetamine: effects on catecholamine systems and behavior. Annu. Rev. Pharmacol. Toxicol. 23,639-677.
Shepherd, G.M. (1994). Visceral brains: feeding. In Neurobiology. Shepherd G.M., ed. New York: Oxford University Press, pp.562-584.
Sibley, D.R. and Monsma, F.J. (1992). Molecular biology of dopamine receptors. Trends Pharmacol. Sci. 13, 61-69.
Sipols, A.J., Baskin, D.G. and Schwartz, M.W. (1995). Effect of intracerebroventricular insulin infusion on diabetic hyperphagia and hypothalamic neuropeptide gene expression. Diabetes 44, 147-151.
Spector, S., Sjoerdsma, A. and Udenfriend, S. (1965). Blockade of endogenous norepinephrine synthesis by a-methyltyrosine, an inhibitor of tyrosine hydroxylase. J. Pharmacol. Exp. Ther. 147, 86-95.
Stanley, B.G. and Leibowitz, S.F. (1985). Neuropeptide Y injected in the paraventricular hypothalamus: a powerful stimulant of feeding behavior. Proc. Natl. Acad. Sci. USA 82, 3940-3943.
Stanley, B.G., Kyrkouli, S.E., Lampert, S. and Leibowitz, S.F. (1986). NPY chronically injected into the hypothalamus: a powerful neurochemical inducer of hyperphagia and obesity. Peptides 7, 1189-1192.
Stellar, E. (1994). The physiology of motivation. 1954. Psychol. Rev. 101, 301-311.
Sternberger, L.A. and Sternberger, N.H. (1986). The unlabeled antibody method: comparison of peroxidase-antiperoxidase with avidin-biotin complex by a new method of quantification. J. Histochem. Cytochem. 34, 509-605.
Strakowski, S.M., Sax, K.W., Rosenberg, H.L., BelBello, M.P. and Adler, C.M. (2001). Human response to repeated low-dose d-amphetamine: evidence for behavioral enhancement and tolerance. Neuropsychopharmacology 25, 548-554.
Szklarczyk, A. and Kaczmarek, L. (1995). Antisense oligodeoxyribonucleotide: stability and distribution after intracerebral injection into rat brain. J. Neurosci. Meth. 60, 181-187.
Thiele, T.E., Marsh, D.J., Ste-Marlie, L., Bernstein, I.L. and Palmiter, R.D. (1998). Ethanol consumption and resistance are inversely related to neuropeptide Y levels. Nature 396, 366-369.
Thornberg, J.E. and Moore, K.E. (1972). A comparison of the locomotor stimulant properties of amantadine and l- and d-amphetamine in mice. Neuropharmacology 11, 675-682.
Thorsell, A., Michalkiewicz, M., Dumont, Y., Quirion, R., Caberlotto, L., Rimondini, R., Mathe, A.A. and Heilig, M. (2000). Behavioral insensitivity to restraint stress, absent fear suppression of behavior and impaired spatial learning in transgenic rats with hippocampal neuropeptide Y overexpression. Proc. Natl. Acad. Sci. USA 97, 12852-12857.
Tresedes, S.A., Smith, L.A. and Jenner, P. (2000). Endogenous dopaminergic tone and dopamine agonist action. Movement Disord. 15, 804-812.
Uhlmann, E. and Peyman, A. (1990). Antisense oligonucleotide: a new therapeutic principle. Chem. Rev. 90, 543-584.
Uramura, K., Yada, T., Muroya, S., Shioda, S., Shiratani, T. and Takigawa, M. (2000). Methamphetamine induces cytosolic Ca2+ oscillations in the VTA dopamine neurons. NeuroReport 11, 1057-1061.
Vallone, D., Picetti, R. and Borrelli, E. (2000). Structure and function of dopamine receptors. Neurosci. Biobehav. Rev. 24, 125-132.
Vollenweider, F.X., Maguire, R.P., Leenders, K.L., Mathys, K. and Angst, J. (1998). Effects of high amphetamine dose on mood and cerebral glucose metabolism in normal volunteers using positron emission tomography (PET). Psychiatr. Res. 83, 149-62.
Wahlestedt, C. (1994). Antisense oligonucleotide strategies in neuropharmacology. Trends Pharmacol. Sci. 15, 42-46.
William, P., Melega, A.E., Williams, D.A., Schmitz, E.W., Distefano and Cho, A.K. (1995). Pharmacokinetic and pharmacodynamic analysis of the actions of d-amphetamine and d-methamphetamine on the dopamine terminal. J. Pharmacol, Exp. Ther. 274, 90-96.
Willow, M. and Nicholson, G.M. (1995). Modulation of neurotransmitter released by some therapeutic and socially used drugs. In Neurotransmitter release and its modulation. Powis, D.A. and Bunn, S.J. eds. New York: Cambridge University Press, pp.293-327.
Wise, R.A. and Carlezon, W.A. (1994). Attenuation of the locomotor-sensitizing effects of the D2 dopamine agonist bromocriptine by either the D1 antagonist SCH 23390 or the D2 antagonist raclopride. Synapse 17, 155-159.
Wolgin, D.L. and Hughes, K.M. (1996). Effect of sensitization of stereotypy on the acquisition and retention of tolerance to amphetamine hypophagia. Psychopharmacology 126, 219-25.
Wolgin, D.L. and Hughes, K.M. (1997). Role of behavioral and pharmacological variables in the loss of tolerance to amphetamine hypophagia. Psychopharmacology 132, 342-349.
Wolgin, D.L. (2000). Contingent tolerance to amphetamine hypophagia: new insight into the role of environmental context in the expression of stereotypy. Neurosci. Biobehav. Rev. 24, 279-294.
Woods, S.C., Figlewicz, D.P., Madden, L., Porte, D.Jr., Sipols, A.J. and Seeley, R.J. (1998). NPY and food intake: discrepancies in the model. Regul. Peptides 75, 403-408.
Woods, S.C., Seeley, R.J., Porte Jr., D. and Schwartz, M.W. (1998). Signals that regulate food intake and energy homeostasis. Science 280, 1378-1382.
Yoshihiro, T., Honma, S., Mitome, M. and Honma, K.I. (1996). Methamphetamine stimulates the release of neuropeptide Y and noradrenaline from the paraventricular nucleus in rats. Brain Res. 707, 119-121.
Yuan, J., Callahan, B.T., McCann, U.D. and Ricaurte, G.A. (2001). Evidence against an essential role of endogenous brain dopamine in methamphetamine-induced dopaminergic neurotoxicity. J. Neurochem. 77, 1338-1347.
Zarrindast, M.R., Owji, A.A. and Hosseini, T. (1991). Evaluation of dopamine receptor involvement in rat feeding behavior. Gen. Pharmacol. 22, 1011-1016.
Zon, G. (1991). Oligonucleotide analogues as potential chemotherapeutic agents. Pharm. Res. 52, 211-225.