簡易檢索 / 詳目顯示

研究生: 李彥德
Lee, Yen-De
論文名稱: (1-x)(Na0.5K0.5)O3-xM(Fe0.5Nb0.5)O3 (M=Sr、Ca) 複合型鈣鈦礦之介電性質研究
The Dielectric Properties of Complex Perovskite Oxide of (1-x)(Na0.5K0.5)O3-xM(Fe0.5Nb0.5)O3 (M=Sr、Ca)
指導教授: 張炎輝
Chang, Yen-Hwei
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 92
中文關鍵詞: 介電鈣鈦礦
外文關鍵詞: (Na0.5K0.5)NbO3, Dielectric
相關次數: 點閱:74下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本實驗主要探討(Na0.5K0.5)NbO3中添加M(Fe0.5Nb0.5)O3 (M=Sr、Ca)對其結構與介電性質的影響,除了探討添加量的不同之外,因燒結溫度對於製備介電陶瓷相當重要,故又探討其對於性質上的差異。
    本實驗成功以兩階段固態反應法合成(1-x)(Na0.5K0.5)NbO3 -xSr(Fe0.5Nb0.5)O3與(1-x)(Na0.5K0.5)NbO3-xCa(Fe0.5Nb0.5)O3之復合型鐵電陶瓷系統,且皆可有效改善純(Na0.5K0.5)NbO3之不易燒結以及容易潮解的問題,而得到一緻密的介電陶瓷。其胚體密度會先隨燒結溫度上升而增加,達到一最大值後若在增加溫度則會出現明顯下降的情形,其最佳燒結溫度會隨添加量的增加而有往高溫方向移動的趨勢,且其密度會明顯影響其介電特性。從SEM的分析中可以發現,隨著添加量增加會出現因取代離子半徑差異所造成的抑制晶粒成長現象,導致有晶粒細化的情形產生。(1-x)(Na0.5K0.5)NbO3-xSr(Fe0.5Nb0.5)O3的系列中,當x=0.1在1160oC燒結兩小時的條件下,在室溫可得到的最大介電常數約為60000左右,其介電損約為0.29,而在(1-x)(Na0.5K0.5)NbO3- xCa(Fe0.5Nb0.5)O3的部份,則在x=0.05,1140oC下燒結兩小時,可在室溫下得到最大的介電常數33000左右,其介電損約為0.045。在NKN-SFN、NKN-CFN系統中,其介電常數峰值皆隨添加量提高而下降,峰值形狀亦隨添加量增加而逐漸變得平緩、寬廣,而介電常數亦隨量測頻率增加而減少,對應到鐵電遲緩曲線的量測,可發現隨著添加量增加出現了擴散式相轉換的情形,其遲緩特性亦越趨顯著。在cole-cole plot的測量中,可發現NKN-SFN與NKN-CFN具有晶界能障型電容的形式。

    Abstract
    This research focused on the effects of different dopants to their structural and dielectric properties of the perovskite of doped M(Fe0.5Nb0.5)O3 (M=Sr, Ca) (Na0.5K0.5)NbO3. Because the sintering temperature is very significant for dielectric ceramics properties, the effects of doping concentration and sintering temperature were investigated.
    The complex perovskite ferroelectric ceramics, (1-x)(Na0.5K0.5)NbO3- xSr(Fe0.5Nb0.5)O3 and (1-x)(Na0.5K0.5)NbO3-xCa(Fe0.5Nb0.5)O3 were fabricated by two stage solid-state reaction. The problems of pure NKN that were not easily to obtain a dense NKN ceramics and deliquesce when exposed to humidity were solved. As sintering temperature increases, the bulk density increases first and reaches a maximum value, then the density will drop if the temperature keep increase. The optimum sintering temperature tends to shift to higher temperature as doping concentration increases. From SEM analysis, as the doping concentration increases, the effect of the limited grain-growth caused by the ionic radius differences is more obviously, moreover the grain-refinement can be observed. In (1-x)(Na0.5K0.5)NbO3-xSr(Fe0.5Nb0.5)O3 system with x=0.1 sintered at temperature 1160oC had the highest dielectric constant ~60000 and the dielectric loss about 0.29 at room temperature, and In (1-x) (Na0.5K0.5)NbO3 -xCa(Fe0.5Nb0.5)O3 system with x=0.05 sintered at temperature 1140oC had the highest dielectric constant ~33000, the dielectric loss about 0.045 at room temperature were obtain. In both NKN-SFN and NKN-CFN system, the dielectric constant peak decreases and the shape of the peak becomes broader with doping concentration increases. By the measurement of the ferroelectric hysteresis loop, the diffusion phase transition can be observed as the doping concentration increases. And the ferroelectric relaxor properties were more obviously. Finally, by the measurement of the cole-cole plot, make sure the NKN-SFN and NKN-CFN were the grain boundary insulation type capacitor.

    目錄 摘要................................................................................................................ Ⅰ Abstract.......................................................................................................... Ⅱ 目錄................................................................................................................ Ⅳ 表目錄............................................................................................................ Ⅵ 圖目錄............................................................................................................ Ⅶ 第一章 緒論.................................................................................................. 1 1-1. 前言............................................................................................... 1 1-2. 研究動機....................................................................................... 2 1-3. 研究目的....................................................................................... 4 第二章 基礎理論.......................................................................................... 6 2-1. 晶體結構及電性質....................................................................... 6 2-1-1. NaNbO3(鈮酸鈉)................................................................. 6 2-1-2. KNbO3(鈮酸鉀).................................................................. 6 2-1-3. (Na1-xKx)NbO3 (鈮酸鉀納)................................................. 7 2-1-4. 結構之穩定性.................................................................... 8 2-2. 介電原理....................................................................................... 9 2-2-1. 介電性質............................................................................ 9 2-2-2. 極化機構............................................................................ 10 2-2-3. 介電質對電容的影響........................................................ 11 2-3. 鐵電性質....................................................................................... 13 2-3-1. 鐵電基本性質.................................................................... 13 2-3-2. 鐵電電滯曲線.................................................................... 14 2-3-3. 複合型鈣鈦礦結構特性之有序-無序排列....................... 14 2-3-4. 弛緩性質(Relaxor)............................................................. 15 2-4. 阻抗分析原理............................................................................... 16 第三章 實驗內容與方法.............................................................................. 31 3-1. 實驗方法....................................................................................... 31 3-2. 實驗藥品....................................................................................... 31 3-3. 固態反應法................................................................................... 31 3-4. 結構與成份分析........................................................................... 32 3-4-1. X 光繞射分析.................................................................... 32 3-4-2. 密度量測............................................................................ 32 3-4-3. SEM 顯微結構之分析....................................................... 32 3-5. 性質量測....................................................................................... 33 3-5-1.介電性質(Dielectric Properties)測量.................................. 33 3-5-2.阻抗分析量測...................................................................... 33 3-5-3. P-E曲線量測....................................................................... 33 第四章 結果與討論...................................................................................... 37 4-1. 固態反應法合成(1-x)(Na0.5K0.5)NbO3-xSr(Fe0.5Nb0.5)O3及其介電性質研究.................................................................................... 37 4-1-1. (1-x)(Na0.5K0.5)NbO3-xSr(Fe0.5Nb0.5)O3粉末及胚體之X光繞射分析.......................................................................... 37 4-1-2. (1-x)(Na0.5K0.5)NbO3-xSr(Fe0.5Nb0.5)O3胚體密度量測….. 38 4-1-3. SEM表面微結構分析........................................................ 39 4-1-4. (1-x)(Na0.5K0.5)NbO3-xSr(Fe0.5Nb0.5)O3介電性質分析...... 40 4-1-5. (1-x)(Na0.5K0.5)NbO3-xSr(Fe0.5Nb0.5)O3阻抗分析量測….. 43 4-1-6. (1-x)(Na0.5K0.5)NbO3-xSr(Fe0.5Nb0.5)O3電滯曲線(P-E curve)量測............................................................................ 44 4-1-7. 結論.................................................................................... 45 4-2. 固態反應法合成(1-x)(Na0.5K0.5)NbO3-xCa(Fe0.5Nb0.5)O3及其介電性質研究................................................................................ 63 4-2-1. (1-x)(Na0.5K0.5)NbO3-xCa(Fe0.5Nb0.5)O3粉末及胚體之X光繞射分析.......................................................................... 63 4-2-2. (1-x)(Na0.5K0.5)NbO3-xCa(Fe0.5Nb0.5)O3胚體密度量測..... 64 4-2-3. SEM表面微結構分析........................................................ 64 4-2-4. (1-x)(Na0.5K0.5)NbO3-xCa(Fe0.5Nb0.5)O3介電性質分析..... 65 4-2-5. (1-x)(Na0.5K0.5)NbO3-xCa(Fe0.5Nb0.5)O3阻抗分析量測..... 69 4-2-6. (1-x)(Na0.5K0.5)NbO3-xCa(Fe0.5Nb0.5)O3電滯曲線(P-E curve)量測............................................................................ 69 4-2-7. 結論.................................................................................... 70 第五章 總結論.............................................................................................. 86 參考文獻........................................................................................................ 90 表目錄 Table. 1-1 The Density and electric properties of NKN and NKN-AET ceramics measured at room temperature...................................... 5 Table. 4-1 The Tolerance factor of (1-x)(Na0.5K0.5)NbO3-xM(Fe0.5Nb0.5)O3 (M=Sr、Ca) perovskite system..................................................... 48 Table. 4-2 The theoretical density、optimum sintering temperature and relative density of (1-x)(Na0.5K0.5)NbO3-xSr(Fe0.5Nb0.5)O3......... 49 Table. 4-3 The remanet polarization and coercive field with sintering temperature of 0.99(Na0.5K0.5)NbO3-0.01Sr(Fe0.5Nb0.5)O3.......... 49 Table. 4-4 The theoretical density、optimum sintering temperature and relative density of (1-x)(Na0.5K0.5)NbO3-xCa(Fe0.5Nb0.5)O3........ 72 Table. 4-5 The remanet polarization and coercive field with sintering temperature of 0.99(Na0.5K0.5)NbO3-0.01Sr(Fe0.5Nb0.5)O3.......... 72 Table. 5-1 The highestεr and D of each (1-x)(Na0.5K0.5)NbO3- xSr(Fe0.5Nb0.5)O3 with solid-state reaction.................................... 87 Table. 5-2 The highestεr and D of each (1-x)(Na0.5K0.5)NbO3- xCa(Fe0.5Nb0.5)O3 with solid-state reaction.................................... 88 Table. 5-3 The resistivity of the (1-x)(Na0.5K0.5)NbO3-xM(Fe0.5Nb0.5)O3 (M=Sr、Ca) system at the temperature........................................... 89 圖目錄 Fig. 2-1 Configuration of the ABO3 perovskite unit cell for KNbO3 and NaNbO3............................................................................................ 21 Fig. 2-2 Distortion of NaNbO3 unit cell in its polymorphic forms............... 21 Fig. 2-3 Variation of pseudocubic lattice constants with temperature for NaNbO3........................................................................................... 22 Fig. 2-4 Sub-lattice structure.......................................................................... 22 Fig. 2-5 Double loop...................................................................................... 22 Fig. 2-6 Distortion of KNbO3 unit cell in its polymorphic forms.................. 23 Fig. 2-7 Distortion of NaxK1-xNbO3 unit cell in its polymorphic forms........ 23 Fig. 2-8 Phase diagram of the KNbO3-NaNbO3 system................................ 24 Fig. 2-9 Schematic diagram of a single electric dipole and the polarization vector in a dielectric......................................................................... 24 Fig. 2-10 The moment of the forces acting upon a dipole in an electric Field............................................................................................... 24 Fig. 2-11 (a) Four kinds of polarization mechanisms (b) Frequency dependence of the different contributions to the polarization........ 25 Fig. 2-12 The relationship between polarization and time (a) dipole (b) polarization process........................................................................ 26 Fig. 2-13 The phase difference of current and voltage in circuits.................. 26 Fig. 2-14 The figure of ferroelectric hysteresis loop...................................... 27 Fig. 2-15 Strong dielectric material compared with relaxor dielectric material........................................................................................... 27 Fig. 2-16 The random arrangement of relaxor ferroelectric.......................... 28 Fig. 2-17 The microstructure of A(B1B2)O3.................................................. 28 Fig. 2-18 The Cole-Cole plot of (a) Single resistor R (b) Single capacitor C (c) A series combination of an ideal capacitor C and resistor R (d) A parallelcombination of an ideal capacitor C and resistor R.. 29 Fig. 2-19 The Cole-Cole plot of two parallel R-C circuits in series.............. 30 Fig. 2-20 The Cole-Cole plot of a resistor in series with parallel R-C.......... 30 Fig. 3-1 Illustration the preparation procedure of the (1-x)(Na0.5K0.5)NbO3- xM(Fe0.5Nb0.5)O3 (M=Ca、Sr) powders by sold state reaction......... 35 Fig. 3-2 The modified Sawyer-Tower circuit................................................. 36 Fig. 3-3 The measurement system of P-E curves........................................... 36 Fig. 4-1 X-ray diffraction patterns for compositions x = 0.05 of the system (1-x) (Na0.5K0.5)NbO3-x Sr(Fe0.5Nb0.5)O3 calcined at (a) 500oC (b) 600oC (c) 700oC (d) 800oC (e) 900oC (f) 950oC (g) 1000oC for 5hr..................................................................................................... 50 Fig. 4-2 X-ray diffraction patterns for compositions x = (a) 0.01 (b) 0.03 (c) 0.05 (d) 0.07 (e) 0.1 (f) 0.13 (g) 0.15 (h) 0.2 of the system (1-x) (Na0.5K0.5)NbO3-x Sr(Fe0.5Nb0.5)O3 calcined at 950oC for 5hr..................................................................................................... 51 Fig. 4-3 X-ray diffraction patterns for compositions x = (a) 0.01 (b) 0.03 (c) 0.05 (d) 0.07 (e) 0.1 (f) 0.13 (g) 0.15 (h) 0.2 of the system (1-x) (Na0.5K0.5)NbO3-x Sr(Fe0.5Nb0.5)O3 sintered at 1100oC for 2hr..................................................................................................... 52 Fig. 4-4 Variation of density of (1-x)(Na0.5K0.5)NbO3-xSr(Fe0.5Nb0.5)O3 ceramics with the content and sintering temperature....................... 53 Fig. 4-5 Scanning electron micrograph of surfaces with x (a) 0.01, (b) 0.03, (c) 0.05, (d) 0.07, (e) 0.10, (f) 0.13, (g) 0.15, (h) 0.20 in the system (1-x)(Na0.5K0.5)NbO3-xSr(Fe0.5Nb0.5)O3 sintered at 1100oC for 2hr............................................................................................... 54 Fig. 4-6 Scanning electron micrograph with different samples of x=0.05 (a) 1060oC, (b) 1140oC, (c) 1180oC, and x=0.20 (d) 1060oC, (e) 1140oC, (f) 1180oC, (g) 1240oC in the system of (1-x)(Na0.5K0.5)NbO3-xSr(Fe0.5Nb0.5)O3........................................... 55 Fig. 4-7 Variation of dielectric constant with temperature in different doping concentration at (a) 0.01 -0.1 (b) 0.13-0.2 for samples sintered at 1100oC for 2hr, measured at 1kHz.................................. 56 Fig. 4-8 Variation of dielectric loss with temperature in different doping concentration at (a) 0.01 -0.1 (b) 0.13-0.2 for samples sintered at 1100oC for 2hr, measured at 1kHz................................................... 57 Fig. 4-9 The dielectric constant of (1-x)(Na0.5K0.5)NbO3-xSr(Fe0.5Nb0.5)O3 measured at room temperature and 1kHz as a function of different sintering temperature........................................................................ 58 Fig. 4-10 The dissipation factor of (1-x)(Na0.5K0.5)NbO3-xSr(Fe0.5Nb0.5)O3 measured at room temperature and 1kHz as a function of different sintering temperature....................................................... 58 Fig. 4-11 Variation of (a) dielectric constant and (b) dielectric loss at different temperature measured at 1k, 10k, 100k and 1M Hz for 0.8(Na0.5K0.5)NbO3-0.2Sr(Fe0.5Nb0.5)O3 sintered at 1100oC for 2h.................................................................................................... 59 Fig. 4-12 Cole-Cole impedance plots for 0.85(Na0.5K0.5)NbO3- 0.15Sr(Fe0.5Nb0.5)O3 sintered at 1160oC measured at different temperatures of (a) 0oC, (b) 30oC, (c) 100oC................................. 60 Fig. 4-13 P-E hysteresis loops of samples with x= (a) 0.01,(b) 0.03, (c) 0.05, (d) 0.1, (e) 0.15 in (1-x)(Na0.5K0.5)NbO3-xSr(Fe0.5Nb0.5)O3 system which sintered at 1100oC for 2hr........................................ 61 Fig. 4-14 P-E hysteresis loops 0.99(Na0.5K0.5)NbO3-0.01Sr(Fe0.5Nb0.5)O3 with different sintering temperatures (a) 1020oC, (b) 1080oC, (c) 1100oC............................................................................................ 62 Fig. 4-15 X-ray diffraction patterns for compositions x = 0.05 of the system (1-x) (Na0.5K0.5)NbO3-x Ca(Fe0.5Nb0.5)O3 calcined at (a) 500oC (b) 600oC (c) 700oC (d) 800oC (e) 900oC (f) 950oC (g) 1000oC for 5hr................................................................................ 73 Fig. 4-16 X-ray diffraction patterns for compositions x = (a) 0.01 (b) 0.03 (c) 0.05 (d) 0.07 (e) 0.1 (f) 0.13 (g) 0.15 (h) 0.2 of the system (1-x) (Na0.5K0.5)NbO3-x Ca(Fe0.5Nb0.5)O3 calcined at 950oC for 5hr................................................................................................... 74 Fig. 4-17 X-ray diffraction patterns for compositions x = (a) 0.01 (b) 0.03 (c) 0.05 (d) 0.07 (e) 0.1 (f) 0.13 (g) 0.15 (h) 0.2 of the system (1-x) (Na0.5K0.5)NbO3-x Ca(Fe0.5Nb0.5)O3 sintered at 1100oC for 2hr................................................................................................... 75 Fig. 4-18 Variation of density of (1-x)(Na0.5K0.5)NbO3-xCa(Fe0.5Nb0.5)O3 ceramics with the content and sintering temperature..................... 76 Fig. 4-19 Scanning electron micrograph of surfaces with x (a) 0.01, (b) 0.03, (c) 0.05, (d) 0.07, (e) 0.10, (f) 0.13, (g) 0.15, (h) 0.20 in the system (1-x)(Na0.5K0.5)NbO3-xCa(Fe0.5Nb0.5)O3 sintered at 1100oC for 2hr................................................................................ 77 Fig. 4-20 Scanning electron micrograph with different samples of x=0.05 (a) 1060oC, (b) 1140oC, (c) 1180oC, and x=0.20 (d) 1060oC, (e) 1140oC, (f) 1180oC, (g) 1240oC in the system of (1-x) (Na0.5K0.5)NbO3-xCa(Fe0.5Nb0.5)O3................................................ 78 Fig. 4-21 Variation of dielectric constant with temperature in different doping concentration at (a) 0.01 -0.1 (b) 0.13-0.2 for samples sintered at 1100oC for 2hr, measured at 1kHz................................ 79 Fig. 4-22 Variation of dielectric loss with temperature in different doping concentration at (a) 0.01 -0.1 (b) 0.13-0.2 for samples sintered at 1100oC for 2hr, measured at 1kHz................................................. 80 Fig. 4-23 The dielectric constant of (1-x)(Na0.5K0.5)NbO3- xCa(Fe0.5Nb0.5)O3 measured at room temperature and 1kHz as a function of different sintering temperature.................................... 81 Fig. 4-24 The dissipation factor of (1-x)(Na0.5K0.5)NbO3-xCa(Fe0.5Nb0.5)O3 measured at room temperature and 1kHz as a function of different sintering temperature....................................................... 81 Fig. 4-25 Variation of (a) dielectric constant and (b) dielectric loss at different temperature measured at 1k, 10k, 100k and 1M Hz for 0.8(Na0.5K0.5)NbO3-0.2Ca(Fe0.5Nb0.5)O3 sintered at 1100oC for 2hr................................................................................................... 82 Fig. 4-26 Cole-Cole impedance plots for 0.93(Na0.5K0.5)NbO3- 0.07Ca(Fe0.5Nb0.5)O3 sintered at 1160oC measured at different temperatures of (a) 0oC, (b) 30oC, (c) 100oC................................. 83 Fig. 4-27 P-E hysteresis loops of samples with x= (a) 0.01,(b) 0.03, (c) 0.05, (d) 0.1, (e) 0.15 in (1-x)(Na0.5K0.5)NbO3-xCa(Fe0.5Nb0.5)O3 system which sintered at 1100oC for 2hr........................................ 84 Fig. 4-28 P-E hysteresis loops 0.97(Na0.5K0.5)NbO3-0.03Sr(Fe0.5Nb0.5)O3 with different sintering temperatures (a) 1060oC, (b) 1100oC, (c) 1120oC............................................................................................ 85

    參考文獻
    [1] 林世欽,”陶瓷晶片電容性質介紹及在電源模組上之應用“,工業材料雜誌, 178期(2001)93
    [2] 薛立人,”超高電容器的應用深遠弘廣“,工業材料雜誌,128期(1997)133
    [3] 黃瑞雄、顏溪成,”漫談電化學“,科學發展雜誌,359期 P.27
    [4] 吳朗,”電子陶瓷 (介電陶瓷)“,全欣出版社 (1994) 19
    [5] S. Zhang, P. W. Rehring, C. Randall and Thomas R.Shrout, J. Crystal Growth, 234 (2002) 415
    [6] R. Zuo, L.Li, X. Hu and Z. Gui, Mater. Lett., 54 (202) 185
    [7] T. T. Fang and H.K. Shiau, J.Am. Ceram. Soc., 87 (2004) 2072
    [8] S. Saha and T. P. Sinha, J.Phys. Condens Matter, 14 (2002) 249
    [9] M. Yokosuka, Jpn. J. Appl. Phys., 34 (1995) 5338
    [10] C. Y. Chung, Y. H. Chang and G. J. Chen, J. Appl. Phys., 96 (2004) 6624
    [11] B. Malic, J. Bernard, J. Holc, D. Jenko, M. Kosec, J. Eur. Ceram. Soc. 25 (2005) 2707-2711
    [12] Y. Chang, Z. Yang, X. Chao, R. Zhang, X. Li, Mater. Lett. 61 (2007) 785-789
    [13] G. shirane, R. Newnham, R. Pepinsky, Phys. Rev. 96 (1954) 581-588
    [14] V. Lingwal, B. S. Semwal, N. S. Panwar, Bull. Mater. Sci. 26 (2003)
    619-625
    [15] H.Birol, D. Damjanovic, N. Setter, J. Eur. Cera. Soc. 26 (2006) 861-866
    [16] Y. Guo, K. Kakimoto, H. Ohsato, Solid State Commun. 129 (2004)
    279-284
    [17] Y. Guo, K. Kakimoto, H. Ohsato, Jpn. J. Appl. Phys. 43 (2004) 6662
    [18] M. Kosec, V. Bobnar, M. Hrovat, J. Bernard, B. Malic, J. Holc, J. Mater. Res. 19 (2004) 1849-1854
    [19] Y. Guo, K. Kakimoto, H. Ohsato, Appl. Phys. Lett. 85 (2004) 4121-4123
    [20] Y. Guo, K. Kakimoto, H. Ohsato, Mater. Lett. 59 (2005) 241-244
    [21] M. Matsubara, T. Yamaguchi, K. Kikuta, et al. Jpn. J. Appl. Phys. 43 (2004) 7159-7163
    [22] M. Matsubara, K. Kikuta, S. Hirano, J. Appl. Phys. 97 (2005) 114105
    [23] M. Matsubara, T. Yamaguchi, W. Sakamoto, et al. J. Am. Ceram. Soc. 88 (2005) 1190-1196
    [24] S. H. Park, C. W. Ahn, S. Nahm, et al. Jpn. J. Appl. Phys. 43 (2004) 1072-1074
    [25] G. H. Haretling, J. Am. Ceram. Soc. 50 (1967) 329-330
    [26] R. P. Wamg, R. J. Xie, T. Sekiya, Y. Shimojo, Mater. Res. Bull. 39 (2004) 1709-1715
    [27] J. F. Li, K. Wang, B. P. Zhang, L. M. Zhang, J. Am. Ceram. Soc. 89 (2006) 706-709
    [28] H. Ishii, H. Nagate, and T. Takenaka, Jpn. J. Appl. Phys. I, 40 [9B] (2001) 5660.
    [29] H. D. Megaw, Ferroelectrics, 7 (1974) 87.
    [30] B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric ceramics, academic, New York, (1971).
    [31] H. Odagawa and K. Yamanouchi, Jpn. J. Appl. Phys., 37 (1998) 2929.
    [32] S. Narayana Murty, K.V Ramana Murty, K. Umakantham, and A.
    Bhanumathi, Ferroelectrics, 102 (1990) 243.
    [33] L. Egerton and D.M. Dillon, J. Am. Ceram. Soc., 42 (1959) 438.
    [34] B. Jaffe, R. S. Roth, and S. Marzullo, J. Res. Natl. Bur. Stand., 55 (1955) 239.
    [35] R. H. Dungan and R. D. Golding, J. Am. Ceram. Soc., 48 (1965) 601.
    [36] L. E. Cross, Philos. Mag. 1 (1956) 76.
    [37] Tennery, V. J. and Hang, K. W., J. Appl. Phys., 39,(1968), 4749-4753.
    [38] M. Ahtee, A. M. Glazer, Acta Crystallogr. A32 (1976) 434.
    [39] B. T. Mathias, J. Remeika, Phys. Rev 82 (1951) 727
    [40] F. Donald Bloss, Crystallography and Crystal Chemistry, 253.
    [41] A. Chelkowski, “Dielectric Physics”, Silesian University Katowice, Poland (1979) 5
    [42] K. Uchino, “Ferroelectric device”, Marcel dekker, Inc., New York (2000) 3
    [43] N. Setter and E. L. Colla.”Ferroelectric Ceramic”, Birkhauser Verlag Basel, (1993) 213
    [44] L.E. Cross, ”Relaxor Ferroelectric “, Ferroelectric,76(1987)241
    [45] V.A. Bokov and I.E. Mly, Sov. Phys. Solid State,3[3],(1961)613
    [46] D. Vladikova,“ The Technique of the Differential Impedance Analysis Part I : Basics of the Impedance Spectroscopy”, Adv. Tech. Energy Sources Invest. And Test. , 2-4 (2004) L8-1
    [47] C.B. Sawyer, C.H. Tower, Phys. Rev. 35 (1930) 269
    [48] 張仁銓,“非含鉛鈮酸鈉鉀陶瓷與氧化鋅薄膜之特性及其在表面聲波元件之應用”,國立成功大學電機工程學系博士論文,(2007) p.120
    [49] 吳南均,“高等X光學 第二版”,國立成功大學材料科學及工程學系,176-179
    [50] D.M. Lin, K.W. Kwok, J.W.L. Chen, Appl. Phys. Lett. 91 (2007) 143513.
    [51] H.L. Du, F.S. Tang, D.J. Liu, D.M. Zhu, W.C. Zhou, S.B. Qu, Mater. Sci. Eng. B 136 (2007) 165
    [52] J. Hao, et al., Physica B 404, (2009) 1974-1978.
    [53] R. Zuo, D. Lv, J. Fu, Y. Liu, L. Li, J. Alloys. Compd. 476 (2009) 836-839.
    [54] H.L. Du, F.S. Tang, F. Lao, D.M. Zhu, S.B. Qu, Z. B. Pei, W.C. Zhou, Material Reseach Bulltin 42 (2007) 1594-1601.
    [55] K. Lichtenencker,“ Dielectric Constant of Natural and Synthetic Mixtures“, Phys. Z., 27 (1926) 115.
    [56] M. Mohsen, R. K.Rehberg, A.M. Massoud and H. T. Langhammer, Radiation Phys. Chem. 68 (2003) 549.
    [57] H. B. Lal, R. D. Dwivedi, and K. Gaur, J. Mater. Sci. (1990) 204-208.
    [58] S. Y. Chu, W. Water, Y. D. Juang, J. T. Liaw, S. B. Dai, Ferroelectrics 287 (2003) 23-33.
    [59] G. A. Smolensky, J. Phys. Soc. Jpn. 28, (1970) 26
    [60] G. A. Smolensky, Ferroelectrics 53, (1984) 129
    [61] R. C. Chang, S.Y. Chu, Y. P. Wang, Y. F. Lin, C. S. Hong, Sens. Actuator A Phys., 138 (2007) 355-360
    [62] R. C. Chang, S.Y. Chu, Y. P. Wang, C. S. Hong, H. H. Huang, J. Alloys Compd. 456, (2008) 308-312
    [63] K. S. Cole and R. H. Cole, J. Chem. Phys. 9 (1941) 341.
    [64] P. Q. Mantas, J. Euro. Ceram. Soc., 19 (1999) 2079.
    [65] A. K. Jonscher, “Dielectric relaxation in Solids”, Chelsea Dielectrics Press Limited, London (1983) 76
    [66] A. R. West, T. B. Adams, F. D. Morrison and D. C. Sinclair, J. Euro. Ceram. Soc., 24 (2004) 1439
    [67] V. G. Bhide, D. S. Rajoria, G. Rama Rao and C. N. R. Rao, Phys. Rev. B.6 (1972) 1021.
    [68] P. Raccah and J. B. Goodenough, Phys. Rev., 155 (1967) 932
    [69] N. Yamaoka, J. Am. Ceram. Soc. Bull., 65 (1986) 1149.
    [70] J. Fleig and J. Maier, J. Am. Ceram. Soc., 82 (1999) 3485.
    [71] R. K. Dwivedi, D. Kumar and O. Parlash, J. Mater. Sci., 36 (2001) 3649.
    [72] R. Moos and K. H. Härdtl, J. Am. Ceram. Soc., 80 (1997) 2549.
    [73] R. K. Dwivedi, D. Kumar and O. Parlash, J. Mater. Sci. 36 (2001) 3641.
    [74] F. D. Morrison, D. C. Sinclair and A. R. West, International J. of Inorganic Mater., 3 (2001) 1205.

    下載圖示 校內:2012-07-14公開
    校外:2014-07-14公開
    QR CODE