| 研究生: |
方詠舜 Fang, Yung-Shun |
|---|---|
| 論文名稱: |
井中與地層中地下水流差異性之研究 The Study on Variation of Groundwater Velocity on Wells and Aquifer |
| 指導教授: |
李振誥
Lee, Cheng-Haw |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 117 |
| 中文關鍵詞: | 地下水流速流向儀 、井徑大小 、井篩大小 、井篩形狀 、井篩密度 、水力梯度 、地層顆粒大小 |
| 外文關鍵詞: | shape of well′s screens, hydraulic head, size of wells, groundwater flow meter, the size of sands, size of well′s screens, density of well′s screens |
| 相關次數: | 點閱:124 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要目的為瞭解井中與地層中地下水流之差異性。首先利用自行設計之試驗砂箱,配合地下水流速流向儀,於控制變因為井體構造(井徑大小、井篩大小、井篩形狀、井篩密度)、水力梯度、地層顆粒大小條件下,分別設計六種不同變因(井徑大小、井篩大小、井篩形狀、井篩密度、水力梯度、地層顆粒大小)之試驗,探討井中觀測流速值與地層達西流速值之差異,利用各批次試驗所得之結果差異,瞭解各種不同控制變因下,對於井中與地層中地下水流速之變異性與否,並探討流向之準確性。其次,利用MODFLOW數值模擬軟體,進行上述試驗之地下水流數值模擬,探討模擬推估所得井周圍與地層地下水流速之差異。最後,利用試驗與模擬所得之值,探討兩者之關係。
本研究試驗結果,在流速結果方面,控制變因為井體構造時,井中平均流速與地層中達西流速值,兩者流速之差異為4-6倍,控制變因為水力梯度以及顆粒大小時,井中平均流速值與地層中達西流速值,其兩者間流速之差異為4-10倍;在流向結果方面,各控制變因之流向量測大致上與實際地層流向值相互吻合。
本研究數值模擬結果,在流速結果方面,各批次試驗模擬推估得井周圍平均流速值與地層流速值,其兩者間流速之差異皆為2倍左右;在流向結果方面,大致上相互吻合。
The purpose of this study is to identify the variation of groundwater velocity on wells and aquifer. A self-designed sand tank is utilized to observe the difference between velocitys in the wells and darcy’s velocity in the aquifers. The experiments in the sand tank are also considered with different independent variables of the measurement such as the structure of the wells (size of wells、size of well′s screens、shape of well′s screens、density of well′s screens)、hydraulic head、the size of sands. A computer code MODFLOW was then performed to modify above-mentioned experiments in order to compare the variation of groundwater velocity around the wells and groundwater velocity in the aquifer. The relations between the experiments and the result of simulation were discussed.
The results show that when the structure of the wells is considered as the independent variable, the ratio between velocity in the wells and darcy’s velocity in the aquifers is given in the range from four to six times. Meanwhile, as the hydraulic head and the size of sands are. considered as the independent variables, the ratio between velocity of observation in the wells and darcy’s velocity in the aquifers is given in the range from 4 to 10 times. The result also indicated that the groundwater direction of observation of each independent variables is matching with real direction in the aquifer. On the other hand, simulation results indicated that the ratio of groundwater velocity between surrounding of wells and aquifers is approximately two times. All flow directions of simulation results are matching with real direction in the aquifer .
參考文獻
1.Bidaux, P., and Tsang , C.F., “Fluid flow patterns around a well bore or an underground drift with complex skin effects”, Water Resources Research, Vol.27, No.11, pp.2993-3008 (1991).
2.Carslaw, H.S., and Jaeger, J.C., “Conduction of heat in solids”, Oxford University Press, New York, 510 pp. (1959).
3.Drost, W., Klotz, D., Koch, A., Moser, H., Neumaier, F., and Rauert, W., “Point dilution methods of investigating ground water flow by means of radioisotopes. Water”, Water Resources Research, Vol.4, No.1, pp.125-146 (1968).
4.Earlougher, R.C., “Advances in well test analysis”, Society of Petroleum Engineers of AIME, Dallas, TX. (1977).
5.Freeze, R.A.,and, Cherry, J.A.,”Groundwater”, Prentice-Hall. Inc. A Simon & Schuster Company Englewood Cliffs, New Jersey (1979).
6.Grisak, G.E., Merritt, W.F., and Williams, D.W., “A fluoride borehole dilution apparatus for groundwater velocity measurements”, Can. Geotech J. 14, pp.554-561 (1977).
7.Graw, K.U., Jagsch, N., Schone, J., and Storz, H., “Deriving groundwater flow information from borehole flow”, Geotechnics and Hydraulic Engineering, No.5, pp.581-588 (2000).
8.Kerfoot, W.B., Massard, V.A., “Monitoring well screen influences on direct flowmeter measurements”, Ground Water Monit. Rev. Fall, pp.74-77 (1985).
9.Kerfoot, W.B., “Monitoring construction and recommended procedures for direct ground-water flow measurements using a heat-pulsing flowmeter”, Ground-Water Contamination: Field Methods. American Society for Testing and Materials, Philadelphia PA. pp. 146-161 (1988).
10.Kearl, P. M., “Observations of particle movement in a monitoring well using the colloidal borescope”, Journal of hydrology. 200, pp.323-344 (1997).
11.Kearl, P.M., and Roemer, K., “Evaluation of groundwater flow directions in a heterogeneous aquifer using the colloidal borescope-Advances in Environmental Research”, Advances in Environmental Research, Vol.2, No.1, pp.12-23 (1998).
12.Kearl, P.M., Roemer, K., Rogoff, E.B., and Richard M.R., “Characterization of a fractured aquifer using the colloidal borescope”, Advances in environmental research, Vol.3, No.1, pp.49-57 (1998).
13.Molz, F.J., Morin, R.H., Hess A.E., Melville, J.G., and Guven, O., “The impeller meter for measuring aquifer permeability variations-Evaluation and comparison with other tests”, Water Resources Research, Vol.25, No.7, pp.1677-1683 (1989).
14.Momii, K., Jinno, K., and Hirano, F., “Laboratory studies on a laser Doppler velocimeter system for horizontal groundwater velocity measurement in a borehole”, Water Resources Research, Vol.29, No.2, pp.283-291 (1993).
15.Molz, F.J., Morin R.H., Hess, A.E., Melville J.G., and Guven, O., “The impeller meter for measuring aquifer permeability variations-Evaluation and comparison with other tests”, Water Resources Research, Vol.25, No.7, pp.1677-1683 (1989).
16.Newhouse, M.W., Izbicki, J.A., and Smith, G.A., “Comparison of velocity-log data collected using impeller and electromagnetic flowmeters”, Ground water, Vol.43,No3, pp.434-438 (2005).
17.Schwartz, F.W.,and H. Zhang, “Fundamentals of ground water”, John Wiley & Sons, Inc (2002).
18.Young, S.C., Pearson H.S.,“The electromagnetic borehole flowmeter-description and application”, Ground Water Monit. Rev. Fall, pp.138-147 (1995).
19.Wheatcraft, S.W., Winterberg F., “Steady state flow passing through a cylinder of permeability different from the surrounding medium”, Water Resources Research, Vol.21, No.12, pp.1923-1929 (1985).
20.丁澈士、蘇惠珍,「PMWIN 三維地下水模式」,五南圖書出版公司,台北,(2004)。
21.丁澈士、皺禕,「地下水與土木工程講義」,第四版,國立屏東科技大學土木工程技術系,屏東縣 (1998)。
22.丁澈士,「水文地質講義」,國立屏東科技大學土木工程技術系,屏東縣 (2002)。
23.王如意、易任,茂昌圖書有限公司,應用水文學,238-302頁。
24.方詠舜、李振誥、吳育生,「應用井中攝影技術探討地下水流速及流向之研究」,第二屆資源工程研討會論文集,99-103頁,(2005)。
25.田村、安藤、池田,「地下水流速流向計之適用性探討」,土木學會第44回年次學術講演會概要集,228-229頁,(1989)。
26.朱佳仁,「工程流體力學」,科技圖書股份有限公司,台北縣 (2001)。
27.安藤義久、齊藤秀晴、長塚正樹,「地下水流速流向的開發與適用性探討」,土木學會第44回年次學術講演會概要集,200-201頁。
28.安藤義久、田村考廣、齊藤秀晴、野澤篤志,「利用CCD照相機測地下水流速及流向之適用性」,日本水文、水資學會研究發表會要旨集,196-199頁,(1990)。
29.李似椿、曹以松,「地下水」,中國土木水利工程學會,台北市,(2003)。
30.李光敦,「水文學」,五南圖書出版有限公司,151-200頁,台北市,(2002)。
31.余進利、林碧山、張璠、林觀富,「地下水流速流向量測方法之探討」,第七屆水利工程研討會論文集,E187-E196頁,基隆,(1994)。
32.吳育生、余進利、曾建璋,「應用井中攝影技術量測地下水流速流向」,第六屆水資源及水質保護研討會論文集,199-206頁,(2004)。
33.施國欽,「大地工程學-土壤力學篇」,文笙書局,5.1-5.104頁,(1996)。
34.徐義人,「應用水文學」,大中國圖書公司,163-238頁,台北市,(1995)。
35.根岸正充、本館靜吾、伊藤憲章,「井內地下水流速流向之調查」,北海道開發局土木研究所,197-200頁。
36.陳莉,「水力學」,五南圖書出版有限公司,267-320頁,台北市,(2002)。
37.盛邦科技企業有限公司,「PZ1005型地下水流速流向計-技術資料」,台南市。
38.鄭先偉、劉文聖、賴文正、張洪福、張范鈞,「地下水流速流向計觀測-利用PZ1005型地下水流速流向計」,逢甲大學水利工程學系系刊,(1995)。
39.薛禹群,「地下水動力學原理」,地質出版社,北京市,(1992)。
40.盧至人,「地下水的污染整治」,國立編譯館,13-48頁,台北市,(1992)。