| 研究生: |
黃昶豪 Huang, Chang-Hao |
|---|---|
| 論文名稱: |
電沉積鈀鉑合金薄膜與其甲醇電氧化之催化性質探討 Study of electrodeposition of PdPt alloy thin film and its catalytic property in electrooxidation of methanol |
| 指導教授: |
黃守仁
Whang, Thou-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 138 |
| 中文關鍵詞: | 電沉積 、鈀鉑合金薄膜甲醇氧化 |
| 外文關鍵詞: | PdPt alloy film, methanol oxidation reaction, triethanolamine, ITO |
| 相關次數: | 點閱:151 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文藉由電化學電沉積的方式,在含有氧化銦錫的導電玻璃上製備鈀鉑合金薄膜,並進一步將合金薄膜,用於甲醇電氧化的催化鑑定上。在薄膜製備過程中,使用不同比例的鈀鉑離子溶液,改變沉積電位並找尋其最佳電位,添加三乙醇胺、檸檬酸、酒石酸、草酸等錯合劑於電鍍液中,並尋找最適合的輔助錯合劑,將選定的錯合劑改變其濃度,觀察不同濃度間的差異,最後透過改變沉積電量來改變沉積原子數,探討原子數量不同的合金薄膜的性質。
鈀鉑合金薄膜藉由X-射線繞射儀(XRD)、能量色散X-射線光譜儀(EDS)、掃描式電子顯微鏡(SEM)、電化學分析儀中的循環伏安法(CV)等,鑑定薄膜之合金結構、原子組成比例、薄膜表面樣貌、甲醇電氧化催化效果與電鍍液的電化學性質。
由電化學分析儀中可得知在-0.45 V的沉積電位下製備的合金薄膜具有最佳之甲醇電氧化的催化效果,且添加三乙醇胺的合金薄膜在甲醇電氧化的使用過程中較為穩定,並由最後改變沉積電量結果發現Pd含量較多的合金薄膜,會隨著電量增加進而提升其催化活性,而Pd與Pt比例相近時的合金薄膜,隨著沉積電量增加容易導致甲醇電氧化不穩定的結果。
In this study, we used the electrochemical methods to fabricate PdPt alloy thin film on an ITO coated glass and test its physical and catalytic properties. Our parameters include: deposition potential, ratio of ion concentration, kinds of chelating agent, concentration of triethanolamine (TEA), amount of electricity. The structure, surface morphologies and alloy compositions were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS), respectively. The most important of all, the catalytic efficiency of thin film was examined by cyclic voltammetry (CV).
It was known from the electrochemical analyzer that the alloy thin films prepared at the deposition potential of -0.45 V have the best catalytic efficiency toward methanol oxidation reaction (MOR), and the alloy thin films that manufactured from the plating solution containing triethanolamine were more stable during MOR. The result showed that the catalytic activity of the alloy films with more Pd content increases as the amount of electricity increases. However, the alloy films with more Pt content showed an unstable MOR activity, because large number of catalytic reaction would produce intermediate carbon monoxide and cause Pt to be poisoned.
[01] J. M. Thomas, W.R. Grove and the fuel cell, Taylor & Francis, vol. 92, pp. 3757–3765 (2012).
[02] 黃鎮江, 燃料電池. 全華科技(2003).
[03] 衣寶廉, 燃料電池-原理與應用. 五南圖書(2005).
[04] G.F. McLean, T. Niet, S. Prince-Richard, and N. Djilali, An assessment of alkaline fuel cell technology, International Journal of Hydrogen Energy, vol.27, pp.507–526 (2002).
[05] N. Sammes, R. Bove, and K. Stahl, Phosphoric acid fuel cells: Fundamentals and applications, Current Opinion in Solid State and Materials Science, vol.8, pp.372–378 (2004).
[06] A. Beicha, and R. Zaamouche, Electrochemical model for proton exchange membrane fuel cell systems, Journal of Power Technologies, vol.93, pp.27–36(2013).
[07] A. Wijayasinghe, Development and Characterisation of Cathode
Materials for the Molten Carbonate Fuel Cell, Department of Materials Science and Engineering, Royal Institute of Technology, Doctoral Dissertation(2004).
[08] K. Kendall, Progress in solid oxide fuel cell materials, International Materials Reviews, vol.50, pp257–264(2005).
[09] Fuel Cell Handbook (Seventh Edition), EG&G Technical Services, Inc. (2004).
[10] 楊志忠, 林頌恩, 韋文誠, 科學發展, vol.367, pp. 30–33(2003).
[11] A. Kheirandish, M. S. Kazemi, and M. Dahari, Dynamic performance assessment of the efficiency of fuel cell-powered bicycle: An experimental approach, International Journal of Hydrogen Energy, vol. 39, pp.13276-13284(2014).
[12] S. K. Kamarudin, F. Achmad, and W.R.W. Daud, Overview on the application of direct methanol fuel cell (DMFC) for portable electronic devices, International Journal of Hydrogen Energy, vol. 34, pp.6902-6916(2009).
[13] D. N. Prater, and J. J. Rusek, Energy density of a methanol/hydrogenperoxide fuel cell, Applied Energy, vol.74, pp.135–140(2003).
[14] N. Hashim, S. K. Kamarudin, and W.R.W. Daud, Design, fabrication and testing of a PMMA-based passive single-cell and a multi-cell stack micro-DMFC, International Journal of Hydrogen Energy, vol.34, pp.8263–8269(2009).
[15] A. S. Aricò, P. Cretì, V. Baglio, E. Modica, and V. Antonucci, Influence of flow field design on the performance of a direct methanol fuel cell, Journal of Power Sources, vol.91, pp.202–209(2000).
[16] C. C. Shen, G. B. Jung, F. B. Weng, C. C. Yeh, C. H. Lee, and Y. J. Su, Performance Analysis of a Direct Methanol Fuel Cell Stack With Bipolar Plate Incorporated With Innovative Flow-Field Combination, Journal of Fuel Cell Science and Technology, vol.11, pp.1–6(2014)
[17] K. Sundmacher, T. Schultz, S. Zhou, K. Scott, M. Ginkel, and E. D. Gilles, Dynamics of the direct methanol fuel cell (DMFC): experiments and model-based analysis, Chemical Engineering Science, vol.56, pp. 333–341(2001).
[18] J. Larminie, and A. Dicks, Fuel Cell Systems Explained Second Edition, John Wiley & Sons Ltd(2003).
[19] J. M. Tatibouët, Methanol oxidation as a catalytic surface probe, Applied Catalysis A: General, vol.48, pp.213–252(1997).
[20] 曾重仁, 蔡秉蒼, 燃料電池性能量測與實作, 教育部能源國家型科技人才培育計畫(2012).
[21] B. Ruiz-Camacho , R. Morales-Rodriguez, and A. M. Ramírez, Pt-Ag/C catalyst for methanol oxidation and alcohol tolerant cathode in different electrolytes, International Journal of Hydrogen Energy, vol.41, pp.23336–23344(2016).
[22] T. C. Deivaraj, W. Chen, and J. Y. Lee, Preparation of PtNi nanoparticles for the electrocatalytic oxidation of methanol, Journal of Materials Chemistry, vol. 13, pp.2555–2560(2003).
[23] X. Ge, R. Wang, P. Liu, and Y. Ding, Platinum-Decorated Nanoporous Gold Leaf for Methanol Electrooxidation, Chemistry of Materials., vol.19, pp.5827–5829(2007).
[24] S. Wang, X. Wang, and S. P. Jiang, PtRu Nanoparticles Supported on 1-Aminopyrene-Functionalized Multiwalled Carbon Nanotubes and Their Electrocatalytic Activity for Methanol Oxidation, Langmuir, vol.24, pp.10505-10512(2008).
[25] H. Zhao, J. Yang, L. Li, H. Li, J. Wang, and Y. Zhang, Effect of over-oxidation treatment of Pt–Co/polypyrrole-carbon nanotube catalysts on methanol oxidation, Journal of Materials Chemistry, vol. 34, pp.3908–3914(2009).
[26] C. Xu, A. Liu, H. Qiu, and Y. Liu, Nanoporous PdCu alloy with enhanced electrocatalytic performance, Electrochemistry Communications, vol.13, pp.766–769(2011).
[27] Y. Wang, Z. M. Sheng, H. Yang, S. P. Jiang, and C. M. Li, Electrocatalysis of carbon black- or activated carbon nanotubes-supported Pd–Ag towards methanol oxidation in alkaline media, International Journal of Hydrogen Energy, vol.35, pp.10087–10093(2010)
[28] Y. Wang, X. Wang, and C. M. Li, Electrocatalysis of Pd–Co supported on carbon black or ball-milled carbon nanotubes towards methanol oxidation in alkaline media, Applied Catalysis B: Environmental, vol.99, pp229–234(2010).
[29] Z. Liu, X. Zhang, and L. Hong, Physical and electrochemical characterizations of nanostructured Pd/C and PdNi/C catalysts for methanol oxidation, Electrochemistry Communications, vol.11, pp.925–928(2009).
[30] N. Kakati, J. Maiti, S. H. Lee, and Y. S. Yoon, Core shell like behavior of PdMo nanoparticles on multiwall carbon nanotubes and their methanol oxidation activity in alkaline medium, International Journal of Hydrogen Energy, vol.37, pp.19055–19064(2012).
[31] Q. Tan, C. Du, G. Yin, P. Zuo, X. Cheng, and M. Chen, Highly efficient and stable nonplatinum anode catalyst with Au@Pd core–shell nanostructures for methanol electrooxidation, Journal of Catalysis, vol.295, pp.217–222(2012).
[32] A. Chen, and P. Holt-Hindle, Platinum-Based Nanostructured Materials: Synthesis, Properties, and Applications, Chemical Reviews, vol.110, pp.3767–3804(2010).
[33] C. Bianchini, and P. K. She, Palladium-Based Electrocatalysts for Alcohol Oxidation in Half Cells and in Direct Alcohol Fuel Cells, Chemical Reviews., vol.109, pp.4183–4206(2009).
[34] G. Zhang, C. Huang, R. Qin, Z. Shao, D. An, W. Zhanga, and Y. Wang, Uniform Pd–Pt alloy nanoparticles supported on graphite nanoplatelets with high electrocatalytic activity towards methanol oxidation, Journal of Materials Chemistry A, vol.3, pp.5204–5211(2015).
[35] Y. W. Lee, J. Y. Lee, D. H. Kwak, E. T. Hwang, J. I. Sohn, and K. W. Park, Pd@Pt core–shell nanostructures for improved electrocatalyticactivity in methanol oxidation reaction, Applied Catalysis B: Environmental, vol.179, pp.178–184(2015).
[36] M. P. Hogarth, and T. R. Ralph, Catalysis for Low Temperature Fuel Cells, Platinum Metals Review, vol.46, pp.146–164(2002).
[37] M. Li, S. Zhao, G. Han, and B. Yang, Electrospinning-derived carbon fibrous mats improving the performance of commercial Pt/C for methanol oxidation, Journal of Power Sources, vol.191, pp.351–356(2009).
[38] A. A. Permyakova, B. Han, J. O. Jensen, and N. J. Bjerrum, Pt−Si Bifunctional Surfaces for CO and Methanol Electro-Oxidation, The Journal of Physical Chemistry C, vol.119, pp.8023−8031(2015)
[39] L. L. Mickelson, and C. Friesen, Direct Observation of Bifunctional Electrocatalysis during CO Oxidation at Ruθ=0.37/Pt{111} Surfaces via Surface Stress Measurements, Journal of American Chemical Society, vol.131, pp.14879–14884(2009)
[40] C. J. Pelliccione, E. V. Timofeeva, J. P. Katsoudas, and C. U. Segre, In Situ Ru K-Edge X-ray Absorption Spectroscopy Study of Methanol Oxidation Mechanisms on Model Submonolayer Ru on Pt Nanoparticle Electrocatalyst, The Journal of Physical Chemistry C, vol.117, pp.18904–18912(2013).
[41] F. Kadirgan, B. Beden, J. M. Leger, and C. Lamy, Synergistic Effect in the Electrocatalytic Oxidation of Methanol on Platinum+Palladium Alloy Electrodes, Journal of Electroanalytical Chemistry, vol.125, pp.89–103(1981).
[42] F. Kadirgan, B. Beden, J. M. Leger, and C. Lamy, Electrocatalytic Oxidation of Methanol on Platinum-Based Binary Electrodes, Journal of Electroanalytical Chemistry, vol.127, pp.75–85(1981).
[43] J. Yang, Y. Xie, R. Wang, B. Jiang, C. Tian, G. Mu, J. Yin, B. Wang, and H. Fu, Synergistic Effect of Tungsten Carbide and Palladium on Graphene for Promoted Ethanol Electrooxidation, ACS Applied Materials & Interfaces, vol.5, pp 6571–6579(2013)
[44] J. Wu, S. Shan, J. Luo, P. Joseph, V. Petkov, and C. J. Zhong, PdCu Nanoalloy Electrocatalysts in Oxygen Reduction Reaction: Role of Composition and Phase State in Catalytic Synergy, ACS Applied Materials & Interfaces, vol..7, pp.25906–25913(2015)
[45] L. X. Ding, A. L. Wang, G. R. Li, Z. Q. Liu, W. X. Zhao, C. Y. Su, and Y. X. Tong, Porous Pt-Ni-P Composite Nanotube Arrays: Highly Electroactive and Durable Catalysts for Methanol Electrooxidation, Journal of the American Chemical Society, vol.134, pp.5730–5733(2012).
[46] V. Sudha, and M. V. Sangaranarayanan, Underpotential Deposition of Metals: Structural and Thermodynamic Considerations, The Journal of Physical Chemistry, vol.106, pp.2699–2707(2002).
[47] 胡啟章, 電化學原理與方法, 五南圖書(2002)
[48] A. J. Bard, and L. R. Faulkner, Electrochemical Methods Fundamentals and Applications Second Edition, JOHN WILEY & SONS, INC.(2001).
[49] I. J. Suárez, T. F. Otero, and M. Márquez, Diffusion Coefficients in Swelling Polypyrrole: ESCR and Cottrell Models, The Journal of Physical Chemistry B, vol.109, pp.1723–1729(2005).
[50] M. Ladd, and R. Palmer, Structure Determination by X-ray Crystallography Fifth Edition, Springer(2013).
[51] 林麗娟, X光繞射原理及其應用, X光材料分析技術與應用專題, vol.86, pp.100–109(1994).
[52] Z. Yan, J. Xie, and P. K. Shen, Hollow molybdenum carbide sphere promoted Pt electrocatalyst for oxygen reduction and methanol oxidation reaction, Journal of Power Sources, vol.286, pp.239–246(2015)
[53] J. I. Langford, and A. J. C. Wilson, Scherrer after Sixty Years: A Survey and Some New Results in the Determination of Crystallite Size, Journal of Applied Crystallography, vol.11, pp.102–113(1978).
[54] J. I. Goldstein, C. E. Lyman, D. E. Newbury, E. Lifshin, P. Echlin, L. Sawyer, D. C. Joy, and J. R. Michael, Scanning Electron Microscopy and X-Ray Microanalysis Third Edition, Springer Science(2003).
[55] T. Hagihara, K. Yaori, K. Iwakura, N. Fukumuro, and S. Yae, Electrochemical Quartz Crystal Microbalance Study of the Electrodeposition of Platinum, Electrochimica Acta, vol.176, pp.65–69(2015).
[56] A. C. Hill, R. E. Patterson, J. P. Sefton, and M. R. Columbia, Effect of Pb(II) on the Morphology of Platinum Electrodeposited on Highly Oriented Pyrolytic Graphite, Langmuir, vol.15, pp.4005–4010(1999).
[57] N. V. Long, T. D. Hien, T. Asaka, M. Ohtaki, and M. Nogami, Synthesis and characterization of Pt–Pd alloy and core-shell bimetallic nanoparticles for direct methanol fuel cells (DMFCs): Enhanced electrocatalytic properties of well-shaped core-shell
morphologies and nanostructures, International Journal of Hydrogen Energy, vol.36, pp8478–8491(2011).
[58] V. Selvaraj, M. Alagar, and I. Hamerton, Electrocatalytic properties of monometallic and bimetallic nanoparticles-incorporated polypyrrole films for electro-oxidation of methanol, Journal of Power Sources, vol.160, pp.940–948(2006).
[59] D. R. Lide, CRC Handbook of Chemistry and Physics 85th edition, CRC Press, Boca Raton(2005).
[60] J. B. Raoofa, F. Chekinb, and V. Ehsani, Palladium-doped mesoporous silica SBA-15 modified in carbon-paste electrode as a sensitive voltammetric sensor for detection of oxalic acid, Sensors and Actuators B: Chemical, vol.207, pp.291–296(2015).
[61] S. Ferro, C. A. Martínez-Huitle, and A. D. Battisti, Electroxidation of oxalic acid at different electrode materials, Journal of Applied Electrochemistry, vol.40, pp1779–1787(2010).
校內:2022-01-01公開