| 研究生: |
林鄒全 Lin, Tsou-Chuan |
|---|---|
| 論文名稱: |
利用商用3D列印機打造的自動實驗室液體處理系統 Repurposing the Commercial 3D Printer Into an Automated laboratory Liquid Handling System |
| 指導教授: |
涂庭源
Tu, Ting-Yuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 生物醫學工程學系 Department of BioMedical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 3D列印機 、3D列印 、液體分注 |
| 外文關鍵詞: | 3D printer, 3D printing, Liquid handling |
| 相關次數: | 點閱:139 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,實驗室自動化一直是一個新興的議題。許多製藥和生命科學實驗室都熱衷於高通量自動化,以節省重複和繁瑣的實驗室工作的時間。尤其是液體處理,需要自動化,因為它是實驗室的標準和必不可少的程序。許多研究已經證明了為實驗室目的修改3D打印機的可行性,特別是用於液體處理。然而,這些研究缺乏涉及液體抽吸、分配、輸送、移液和混合的徹底的小體積液體處理。一些改造後的 3D打印機甚至需要注射泵、和霧化器等外部設備來執行液體處理。
我們的研究主旨在於利用商用金屬零件、一次性注射針筒等容易獲得的零組件與設計的3D列印部件,對商用3D列印機進行改裝並對其內部程式進行自定義編寫後將raspberry Pi與之相結合成可利用電腦輸入G-code進行控制之可放置於培養箱內的小型自動化設備平台。
在我們的研究中,透過一系列驗證我們開發系統的液體分配精確度以及移動確認其滿足使用上的精確度,並利用設計的接頭使的移動精度上獲得進一步的提升,額後將開發的系統用於藥物篩檢實驗,驗證了此系統在未來應用於實驗室自動化系統的可行性。
使其能夠達成生醫實驗室的特定目的及需求並在簡化繁瑣重複性動作和製備過程之餘,能使更大程度減少因要照看細胞而付出的時間成本,不僅能使研究人員更能專心致力於研究工作當中更能大大緩解實驗室對細胞維運的人力開支。
關鍵字 : 3D列印機、3D列印、液體分注
In recent years, laboratory automation has emerged as a prominent topic. Many pharmaceutical and life science laboratories are embracing high-throughput automation to save time on repetitive and tedious laboratory tasks. Liquid handling, in particular, demands automation as it is a standard and essential procedure in laboratories. Several studies have demonstrated the feasibility of modifying 3D printers for laboratory purposes, especially for liquid handling. However, these studies lack comprehensive coverage of small-volume liquid handling, including liquid aspiration, dispensing, transport, pipetting, and mixing. Some modified 3D printers even require external devices such as syringe pumps and atomizers to perform liquid handling tasks.
Our research aims to combine commercially available metal parts with custom-designed 3D printed components, integrated with Raspberry Pi for computer control and customizable programming. By retrofitting and assembling these components, we create a small-scale automated device platform that meets specific needs and requirements of biomedical laboratories.
In our research, we verified the precision of liquid distribution and the accuracy of movements in our developed system to ensure it meets the required standards. We further enhanced the movement precision by designing specific connectors. Subsequently, we applied the developed system to drug screening experiments, confirming its feasibility for future use in laboratory automation systems.
This platform can be placed inside an incubator and simplifies repetitive actions and preparation processes. It significantly reduces the time and effort required for cell maintenance, allowing researchers to focus more on their research work and alleviating the labor-intensive tasks associated with cell culture in the laboratory.
Key words : 3D printer、3D printing、Liquid handling
[1] A. L. Bailey, N. Ledeboer, and C. A. D. Burnham, “Clinical microbiology is growing up: The total laboratory automation revolution,” Clinical Chemistry, vol. 65, no. 5. American Association for Clinical Chemistry Inc., pp. 634–643, May 01, 2019. doi: 10.1373/clinchem.2017.274522.
[2] J. R. Genzen, C. A. D. Burnham, R. A. Felder, C. D. Hawker, G. Lippi, and O. M. Peck Palmer, “Challenges and Opportunities in Implementing Total Laboratory Automation,” Clin Chem, vol. 64, no. 2, pp. 259–264, Feb. 2018, doi: 10.1373/CLINCHEM.2017.274068.
[3] F. Barthels, U. Barthels, M. Schwickert, and T. Schirmeister, “FINDUS: An Open-Source 3D Printable Liquid-Handling Workstation for Laboratory Automation in Life Sciences,” SLAS Technol, vol. 25, no. 2, pp. 190–199, Apr. 2020, doi: 10.1177/2472630319877374.
[4] K. Chan et al., “Low-Cost 3D Printers enable high-quality and automated sample preparation and molecular detection,” PLoS One, vol. 11, no. 6, Jun. 2016, doi: 10.1371/journal.pone.0158502.
[5] K. Vandelannoote et al., “Accessible Platform for High-Throughput COVID-19 Molecular Diagnostics and Genome Sequencing Using a Repurposed 3D Printer for RNA Extraction,” ACS Biomater Sci Eng, vol. 7, no. 9, pp. 4669–4676, Sep. 2021, doi: 10.1021/acsbiomaterials.1c00775.
[6] C. E. Anderson et al., “Automated liquid handling robot for rapid lateral flow assay development,” Anal Bioanal Chem, vol. 414, no. 8, pp. 2607–2618, Mar. 2022, doi: 10.1007/s00216-022-03897-9.
[7] M. E. Kempner and R. A. Felder, “A Review of Cell Culture Automation,” https://doi.org/10.1016/S1535-5535-04-00183-2, vol. 7, no. 2, pp. 56–62, Apr. 2002, doi: 10.1016/S1535-5535-04-00183-2.
[8] C. Masini et al., “Automated preparation of chemotherapy: Quality improvement and economic sustainability,” American Journal of Health-System Pharmacy, vol. 71, no. 7, pp. 579–585, Apr. 2014, doi: 10.2146/AJHP130489.
[9] “ISO/DIS 17296-1(en), Additive manufacturing — General principles — Part 1: Terminology.” Accessed: Jul. 31, 2023. [Online]. Available: https://www.iso.org/obp/ui/#iso:std:iso:17296:-1:dis:ed-1:v1:en
[10] N. Shahrubudin, T. C. Lee, and R. Ramlan, “An overview on 3D printing technology: Technological, materials, and applications,” in Procedia Manufacturing, Elsevier B.V., 2019, pp. 1286–1296. doi: 10.1016/j.promfg.2019.06.089.
[11] J. Horvath, “A Brief History of 3D Printing,” Mastering 3D Printing, pp. 3–10, 2014, doi: 10.1007/978-1-4842-0025-4_1.
[12] J. Wada et al., “Effect of Nitrogen Gas Post-Curing and Printer Type on the Mechanical Properties of 3D-Printed Hard Occlusal Splint Material,” Polymers (Basel), vol. 14, no. 19, Oct. 2022, doi: 10.3390/polym14193971.
[13] S. Chinchane, H. Kadam, K. Mowade, and J. M. Pearce, “Open Source 3D Printed ISO 8655 Compliant Multichannel Pipette,” Journal of Open Hardware, vol. 6, no. 1, Jan. 2022, doi: 10.5334/joh.36.
[14] C. Darling and D. A. Smith, “Syringe pump extruder and curing system for 3D printing of photopolymers,” HardwareX, vol. 9, p. e00175, Apr. 2021, doi: 10.1016/J.OHX.2021.E00175.
[15] S. Baas and V. Saggiomo, “Ender3 3D printer kit transformed into open, programmable syringe pump set,” HardwareX, vol. 10, p. e00219, Oct. 2021, doi: 10.1016/J.OHX.2021.E00219.
[16] N. Bessler et al., “Nydus One Syringe Extruder (NOSE): A Prusa i3 3D printer conversion for bioprinting applications utilizing the FRESH-method,” HardwareX, vol. 6, p. e00069, Oct. 2019, doi: 10.1016/J.OHX.2019.E00069.
[17] N. Brandenberg et al., “High-throughput automated organoid culture via stem-cell aggregation in microcavity arrays,” Nat Biomed Eng, vol. 4, no. 9, pp. 863–874, Sep. 2020, doi: 10.1038/s41551-020-0565-2.
[18] J. H. Jo, B. W. Jo, W. Cho, and J. H. Kim, “Development of a 3D Printer for Concrete Structures: Laboratory Testing of Cementitious Materials,” Int J Concr Struct Mater, vol. 14, no. 1, pp. 1–11, Dec. 2020, doi: 10.1186/S40069-019-0388-2/FIGURES/12.
[19] S. M. Hartig, “Basic image analysis and manipulation in imageJ,” Curr Protoc Mol Biol, no. SUPPL.102, 2013, doi: 10.1002/0471142727.mb1415s102.
[20] R. Vijayashree, P. Aruthra, and K. Ramesh Rao, “A comparison of manual and automated methods of quantitation of oestrogen/progesterone receptor expression in breast carcinoma,” Journal of Clinical and Diagnostic Research, vol. 9, no. 3, pp. EC01–EC05, Mar. 2015, doi: 10.7860/JCDR/2015/12432.5628.
[21] H. O. Lin, “Lateral Flow-Based Enzyme-Linked Immunosorbent Assay as a Point-of-Care Technique to Predict Type I Reversal Reactions in Lepromatous Patients,” 2015. [Online]. Available: www.stolaf.edu
[22] P. Hangge, Y. Pershad, A. A. Witting, H. Albadawi, and R. Oklu, “Three-dimensional (3D) printing and its applications for aortic diseases,” Cardiovasc Diagn Ther, vol. 8, no. Suppl 1, p. S19, Apr. 2018, doi: 10.21037/CDT.2017.10.02.
[23] H. Tegally, J. E. San, J. Giandhari, and T. de Oliveira, “Unlocking the efficiency of genomics laboratories with robotic liquid-handling,” BMC Genomics, vol. 21, no. 1. BioMed Central Ltd, Dec. 01, 2020. doi: 10.1186/s12864-020-07137-1.
[24] “Piston-operated volumetric apparatus-Part 6: iTeh STANDARD PREVIEW (standards.iteh.ai),” 2022.
校內:2028-10-16公開