| 研究生: |
張勝博 Chang, Sheng-Po |
|---|---|
| 論文名稱: |
硒化鋅系列光檢測器 ZnSe-Based Photodetectors |
| 指導教授: |
張守進
Chang, Shoou-Jinn |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 微機電系統工程研究所 Institute of Micro-Electro-Mechancial-System Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 英文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 光檢測器 、鈦酸鍶鋇 、鎢化鈦 、同質磊晶 、異質磊晶 、氧化銦錫 、硒化鋅 、響應 、雜訊 |
| 外文關鍵詞: | BST, ZnSe, heteroepitaxial, TiW, ITO, homoepitaxial, responsivity, noise, photodetector |
| 相關次數: | 點閱:159 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
在本論文中,研究利用使用氧電漿處理之同質磊晶p型硒化鋅的鎳/金接觸特性。其中可以發現無論是否有無氧電漿之處理,鋅元素在分佈曲線圖幾乎都是一樣的。並進一步發現經過氧電漿處理後,在接近表面之硒元素濃度變小,而氧元素濃度卻是變大。而其中當表面經過15W氧電漿處理之後,發現很多表面形成許多小山丘,主要是因為跟硒元素之空缺和均電性之氧元素植入有關係。因此,我們可以藉由對試片15W之表面氧電漿處理可以達到最低的補償電壓。
另外一方面,同質磊晶和異質磊晶之硒化鋅金半金光檢測器也是被製作和分析。我們發現同質磊晶之硒化鋅金半金光檢測器可以有較小之暗電流和較大之光電流。在入射波長448nm時,同質磊晶和異質磊晶之硒化鋅金半金光檢測器的響應度分別為0.128、0.045 A/W,而所對應之量子效率分別為36、12%。因此,在同質磊晶和異質磊晶之硒化鋅金半金光檢測器可以獲的最小雜訊等必v分別為7.6×10^-13、2.9×10^-12 W和最大的正規化檢測度分別為9.3×10^11、2.44×10^11 cmHz^0.5W^-1。
然後,在不同接觸電極(氧化銦錫、鎢化鈦、鎳/金)之硒化鋅同質磊晶金半金光檢測器是被製作和分析。而在不同接觸電極(氧化銦錫、鎢化鈦、鎳/金)之硒化鋅同質磊晶金半金光檢測器的蕭基位障高度分別0.66、0.695、0.715eV。在入射波長448nm時,不同接觸電極(氧化銦錫、鎢化鈦、鎳/金)之硒化鋅同質磊晶金半金光檢測器的響應度分別為120、50.6、28.1 mA/W,而所對應之量子效率分別為33.5、14、8%。在頻寬100HZ和偏壓1V下,不同接觸電極(氧化銦錫、鎢化鈦、鎳/金)之硒化鋅同質磊晶金半金光檢測器的雜訊等必v分別為8.14×10^-13、1.73×10^-12、9.25×10^-13 W,而所對應之的正規化檢測度分別為8.7×10^11、4.09×10^11、7.65×10^11 cmHz^0.5W^-1。
最後, 在不同絕緣層(二氧化矽、鈦酸鍶鋇)之硒化鋅同質磊晶金屬-絕緣層-半導體檢測器也是被製作和分析。可以發現硒化鋅同質磊晶金屬-絕緣層-半導體檢測器之暗電流密度比硒化鋅蕭基位障檢測器至少小一個準位。而且硒化鋅同質磊晶金屬-絕緣層-半導體檢測器之紫外光與可見光拒斥比值都是很大的。在不同絕緣層(二氧化矽、鈦酸鍶鋇)之硒化鋅同質磊晶金屬-絕緣層-半導體檢測的雜訊等必v分別為1.24×10^-13、1.9×10^-13 W,而所對應之的正規化檢測度分別為2.55×10^12、1.67×10^12 cmHz^0.5W^-1。這些數據都顯示了比成長在砷化鎵之異質磊晶之硒化鋅光檢測器來的更好。
Abstract
In this thesis, properties of Ni/Au contact on homoepitaxial p-ZnSe with oxygen plasma treatments were investigated. It was found that Zn atom distribution profiles for p-ZnSe with and without treatments were almost identical. It was also found that Se concentration near the surface became less while oxygen concentration near the surface became larger after oxygen plasma treatment. We also observed hillocks, which were related to Se vacancies and/or isoelectronic oxygen impurities, on the surface of 15 W oxygen plasma treated sample. Furthermore, it was found that we can achieve lowest offset voltage from the sample treated with 15 W oxygen plasma treatment.
Moreover, homoepitaxial and heteroepitaxial ZnSe MSM photodetectors were both fabricated and characterized. It was found that homoepitaxial ZnSe MSM photodetector shows smaller dark current and larger photocurrent. With an incident wavelength of 448 nm, it was found that the maximum responsivity for the homoepitaxial and heteroepitaxial ZnSe photodetectors were 0.128 and 0.045 A/W, which corresponds to a quantum efficiency of 36 and 12% respectively. Furthermore, it was found that we achieved the minimum NEP of 7.6×10^-13 W and the maximum D* of 9.3×10^11 cmHz^0.5W^-1 from our homoepitaxial ZnSe photodetector. In contrast, NEP and D* of the heteroepitaxial ZnSe photodetector were 2.9×10^-12 W and 2.44×10^11 cmHz^0.5W^-1, respectively,
Then, we reported fabrication of homoepitaxial ZnSe MSM photodetectors with ITO, TiW and Ni/Au contact electrodes. It was found that barrier heights for electrons were 0.66, 0.695 and 0.715eV for ITO, TiW and Ni/Au on the homoepitaxial ZnSe, respectively. With an incident wavelength of 448 nm, it was found that the maximum responsivities for the homoepitaxial ZnSe MSM photodetectors with ITO, TiW and Ni/Au contact electrodes were 120, 50.6 and 28.1 mA/W, which corresponds to quantum efficiencies of 33.5, 14 and 8% respectively. For a given bandwidth of 100 Hz and a given bias of 1 V, it was found that the corresponding NEP of our homoepitaxial ZnSe MSM photodetectors with ITO, TiW and Ni/Au electrodes were 8.14×10^-13, 1.73×10^-12 and 9.25×10^-13 W, respectively. Furthermore, it was found that the corresponding D* were 8.7×10^11, 4.09×10^11 and 7.65×10^11 cmHz^0.5W^-1, respectively.
Finally, ZnSe MIS photodetectors with SiO2 and BST insulator layers were fabricated on ZnSe substrates. It was found that dark current densities of these MIS photodetectors were at least one order of magnitude smaller than ZnSe Schottky barrier photodetector without the insulator layers. UV-to-visible rejection ratios of these MIS photodetectors were also large. It was found that NEP were 1.24×10^-13 and 1.9×10^-13 for the homoepitaxial ZnSe MIS photodetectors with SiO2 and BST insulator layers, respectively. The corresponding D* were 2.55×10^12 and 1.67×10^12 cmHz^0.5W^-1, respectively. These values were better than those observed from the heteroepitaxial ZnSe photodetectors prepared on GaAs substrates.
Chapter 1
Reference
[1] R. M. Park, M. B. Troffer, and C. M. Rouleau, J. M. DePudyt, and M. A. Haase, “p-ZnSe by nitrogen atom beam doping during molecular beam 8 epitaxial growth”, Appl. Phys. Lett., Vol. 57 Issue 20, pp. 2127-2129, Nov. 1990.
[2] K. Ohkawa, T. Karasawa, and T. Mitsuyu, “Characteristics of p-ZnSe
layers grown by molecular beam epitaxy with radical doping”, Jpn. J.
Appl. Phys., Vol. 30, pp. L152, 1990.
[3] M. A. Haase, J. Qiu, J. M. Depuydt, and H. Cheng, “Blue-green laser
diodes”, Appl. Phys. Lett., Vol. 59 Issue 11, pp. 1272-1274, Sep. 1991.
[4] H. Jeon, J. Ding, W. Patterson, A. V. Nurmikko, W. Xie, D. C. Grillo, M. Kobayashi, and R. L. Gunshor, ”Blue-green injection laser diodes in (Zn,Cd)Se/ZnSe quantum wells”, Appl. Phys. Lett., Vol. 59 Issue 27, pp.3619-3621, Dec. 1991.
[5] H. Cheng, J. M. Depudyt, M. A. Haase, and J. Qiu,” LEOS Topical
meeting on epitaxial materials and in situ processing for optoelectronics devices, “Newport Beach, CA, 1991.
[6] A. V. Nurmikko, R. L. Gunshor, N. Otsuka, and M. Kobaysahi, Int. Conf. Solid-state Dev. Mater., Tsukuba, Japan, 1993.
[7] J. M. Gaines, R. R. Drenten, K. W. Haberern, T. Marshall, P. Mensz, and J. Petruzzello, “Blue-green injection lasers containing pseudomorphic Zn1-xMgxSySe1-y cladding layers and operating up to 394 K”, Appl. Phys. Lett., Vol. 62 Issue 20, pp. 2462-2464, May 1993.
[8] M. Haase, P. F. Baude, M. S. Hagedorn, J. Qiu, J. M. DePuydt, H. Cheng, S. Guha, G. E. Hfler, and B. J. Wu, ”Low-threshold buried-ridge II-VI laser diodes”, Appl. Phys. Lett., Vol. 63 Issue 17, pp. 2315-2317, Oct. 1993.
[9] N. Nakayama, S. Itoh, T. Ohata, K. Makono, H. Okuyama, M. Ozawa, A. 9 Ishibashi, M. Ikeda, and Y. Mori, “Room-temperature continuous
operation of blue laser diodes”, Electron. Lett., Vol. 29, pp. 1488, 1993.
[10] N. Nakayama, S. Itoh, T. Okuyama, M. Ozawa, T. Ohata, K. Makono, M. Ozawa, M. Ikeda, A. Ishibashi, and Y. Mori, “Continuous-wave
operation of 489.9 nm blue laser diode at room temperature”, Electron.
Lett., Vol. 29, pp. 2194, 1993.
[11] A. Salokatve, H. Jeon, J. Ding, M. Hovinen, A. V. Nurmikko, D. Grillo, Li. He, J. Han, Y. Fan, M. Ringle, R. L. Gunshor, G. Hua, and N. Otsuka,“Continuous-wave room temperature ridge waveguide green-blue diode laser”, Electron. Lett., Vol. 29, pp. 2192, 1993.
[12] Y. Kawakami, T. Ohnakado, M. Tsuka, S. Toudera, Y. ITO, Sz. Fujita, and Sg. Fujita, “p-type ZnSe grown by molecular beam epitaxy with remote microwave plasma of N2”, J. Vac. Scl. Technol. B, Vol. 11 No. 6 pp. 2057, 1993.
[13] H. Okuyama, K. Nakano, T. Miyajima, and K. Akimoto, “ Epitaxial
growth of ZnMgSSe on GaAs substrate by molecular beam epitaxy”, Jpn. J. Appl. Phys., Vol. 30, pp. L1620, 1991.
[14] S. Itoh, N. Nakayama, T. Ohata, M. Ozawa, H. Okuyama, K. Nakano, M. Ikeda, A. Ishibashi, and Y. Mori, ”ZnCdSe/ZnSSe/ZnMgSSe SCH laser diode with a GaAs buffer layer”, Jpn. J. Appl. Phys., Vol. 33, pp. L938, 1994.
[15] S. Taniguchi, T. Hino, S. Itoh, K. Nakano, N. Nakayama, A. Ishibashi and M. Ikeda, “100h II-VI blue-green laser-diode”, Electron. Lett., Vol.32 Issue 6, pp. 552-553, Mar. 1996.
[16] E. Kato, H. Noguchi, M. Nagai, H. Okuyama, S. Kijima, and A. Ishibashi, “Significant progress in II-VI blue-green laser diode lifetime”, Electron. Lett., Vol. 34 Issue 3, pp. 282-284, Feb. 1998.
[17] H. Luo, A. Petrou, Handbook of photonics, ed. M. C. Gupa, CRC Press LLC pp.24-48.
[18] A. Ishibashi, “II-VI blue-green laser diodes”, J. Selected Topics in
Quantum Electron., Vol. 1, pp. 741, 1995.
[19] R. L. Gunshor and A. V. Nurmikko, “II-VI blue-green laser diodes: A
frontier of materials research”, MRS Bulletin, July 15 (1995).
[20] A. V. Nurmikko and R. L. Gunshor, Semiconductor Lasers: Past, Present, and Future, edited by G. P. Agrawal (AIP, 1995), p.208.
[21] Y. Fan, J. Han, L. He, J. Saraie, R. L. Gunshor, M. Hagerott, H. Jeon, A. V. Nurmikko, G. C. Hua, and N. Otsuka, “Graded band gap ohmic
contact to p-ZnSe”, Appl. Phys. Lett., Vol. 61 Issue 26, pp. 3160-3162,
Dec. 1992.
[22] F. Hiei, M. Ikeda, M. Ozawa, T. Miyajima, A. Iskibashi, and K. Akimoto,“Ohmic contacts to p-type ZnSe using ZnTe/ZnSe multiquantum wells “, Electron. Lett., Vol. 29, pp. 878, 1993.
[23] M. Hovinen, J. Ding, A. V. Nurmikko, G. C. Hua, D. C. Grillo, Li He, J. Han, and R. L. Gunshor, “Degradation of (Zn,Cd)Se quantum well
heterostructures for blue/green light emitters under high optical
injection”, Appl. Phys. Lett., Vol. 66 Issue 16, pp. 2013-2015, Apr.
1995.
[24] G. C. Hua, N. Otsuka, D. C. Grillo, Y. Fan, J. Han, M. D. Ringle, R. L. Gunshor, M. Hovinen, and A. V. Nurmikko, “Microstructure study of a degraded pseudomorphic separate confinement heterostructure
11 blue-green laser diode”, Appl. Phys. Lett., Vol. 65 Issue 11, pp.
1331-1333, Sep. 1994.
[25] L. H. Kuo, L. Salamanca-Riba, B. J. Wu, G.Hofler, J. M. DePuydt, and H. Cheng, ”Dependence of the density and type of stacking faults on the surface treatment of the substrate and growth mode in ZnSxSe1-x/ZnSe buffer layer/GaAs heterostructures”, Appl. Phys. Lett., Vol. 67 Issue 22, pp. 3298-3300, Nov. 1995.
[26] L. H. Kuo, L. Salamanca-Riba, B. J. Wu, J. M. DePuydt, G.Hofler, and H. Cheng, ”Generation of degradation defects, stacking faults, and misfit dislocations in ZnSe-based films grown on GaAs”, J. Vac. Sci. Technol. B, 13 (1995) 1694.
[27] L. H. Kuo, K. kimura, T. Yasuda, S. Miwa, C. G. Jin, K. Tanaka, and T. Yao, “Effects of interfacial chemistry on the formation of interfacial
layers and faulted defects in ZnSe/GaAs”, Appl. Phys. Lett., 68 (1996)
2413.
[28] M. H. Jeon, L. C. Calhoun, B. P. Ludwig, and R. M. Park, “Impact of
surface stoichiometry control during the initial stages of grown on the
stacking fault concentration in ZnSe epilayers grown by molecular beam epitaxy”, Appl. Phys. Lett., 69 (1996) 2107.
[29] H. C. Lee, T. Abe, M. Watanabe, Z. M. Aung, M. Adachi, T. Shirai, H. Yamada, S. Kuroda, H. Kasada, and K. Ando, “Efficient blue-green
light-emitting diodes of ZnSSe:Te/ZnMgSSe DH structure grown by
molecular-beam epitaxy”, J. Crystal Growth , 214/215 (2000) 1096.
[30] H. Wenisch, M. Fehrer, M. Klude, K. Ohakawa, and D.
Hommel, ”Internal photoluminescence in ZnSe homoepitaxy and application in blue-green-orange mixed-color light-emitting diodes”, J. Crystal Growth, 214/215 (2000) 1075.
[31] K. Katayama, H. Matsubara, F. Nakanishi, T. Nakamura, H. Doi, A.
Saegusa, T. Mitsui, T. Matsuoka, M. Irikura, T. Takebe, S. Nishine, and
T. Shirakawa, “ZnSe-based white LEDs”, J. Crystal Growth, 214/215
(2000) 1064.
Chapter 2
Reference
[1] J.L. Vossen and W. Kern, “Thin Flim Processes”, Academic Press, New York, 131 (1978).
[2] C.Y. Chang and S.M. Sze, “ULSI Technology”, McGraw-Hill, New York,380 (1996).
[3] J.L. Vossen and W. Kern, “Thin Film Processes”, Academic Press, New York, 24 (1978).
[4] S.I. Shah, “Handbook of Thin Film Process Technology”, Institute of Physics Pub, Bristol, UK, P.A3.0:1 (1995).
[5] S.I. Shah, “Handbook of Thin Film Process Technology”, Institute of Physics Pub, Bristol, UK, P.A3.2:1. (1995).
[6] S.M. Sze, “VLSI Technology”, McGraw-Hill, New York, 387 (1978).
[7] Y. Tarui, J. Hidaka and K. Aota, Jpn. J. Appl. Phys, Vol. 23, 827 (1984).
[8] M. Okuyama, Y. Toyoda and Y. Hamakawa, Jpn. J. Appl. Phys, Vol. 23, 97(1984).
[9] O. Itoh, Y. Toyoshima, H. Onuki, N. Washida and T. Ibuk, J. Chem. Phys, Vol. 85, 4876 (1986).
[10] H. Okabe, “Photochemistry of small molecules”, Wiely, New York, (1978).
[11] A.M. Goodman, J. Appl. Phys, Vol. 34, 329 (1963).
[12] R.H. Fowler, Phys. Rev, Vol. 38, 45 (1931).
Chapter 3
Reference
[1] A. Bouhdada, M. Hanzaz, F. Vigue and J. P. Faurie, Appl. Phys. Lett. ,83 (2003) 171.
[2] E. Monroy, F. Vigue, F. Calle, J. I. Izpura, E. Munoz and J. P. Faurie, Appl. Phys. Lett. ,77 (2000) 2761
[3] J. L. Pau, C. Rivera, E. Muoz, E. Calleja, U. Schhle, E. Frayssinet, B. Beaumont, J. P. Faurie and P. Gibart, J. Appl. Phys. ,95 (2004) 8275
[4] F. Vigue, P. de Mierry, J. P. Faurie, E. Monroy, F. Calle and E. Munoz, Electron. Lett. ,36 (2000) 826
[5] Y. M. Yu, S. Nam, Byungsong. O, K. S. Lee, P. Y. Yu, J. W. Lee and Y. D. Choi, J. Crystal Growth ,243 (2002) 389
[6] K. Ohkawa, T. Karasawa and T. Mitsuyu, Jpn. J. Appl. Phys. Lett. ,30 (1991) L152
[7] A. Rinta-Moykky, P. Uusimaa, S. Suhonen, M. Valden, A. Salokatve, M. Pessa and J. Likonen, J. Vac. Sci. Technol. A, 17 (1999) 347-353.
[8] Y. Fan, J. Han, L. He, J. Saraie, R. L. Gunshor, M. Hagerott, H. Jeon, A. V. Nurmikko, G. C. Hua and Y. Otsuka, Appl. Phys. Lett. ,61 (1992) 3161
[9] Y. Lansari, J. Ren, B. Sneed, K. Bowers, J. Cook, Jr. and A. Schetzina, Appl. Phys. Lett. ,61 (1992) 2554
[10] F. Vigu, P. Brunet, P. Lorenzini, E. Tourni and J. P. Faurie, Appl. Phys. Lett. ,75 (1999) 3345
[11] J. J. Fijol, J. T. Trexler, L. Calhoun, R. Park and P. H. Holloway, J. Vac. Sci. Technol. ,14 (1996) 159
[12] Y. Lansari, J. Ren, B. Sneed, K. Bowers, J. Cook and J. Schetzina, Appl. Phys. Lett. ,61 (1992) 2554
[13] W. R. Chen, S. J. Chang, Y. K. Su, J. F. Chen, W. H. Lan, W. J. Lin, Y. T. Cherng, C. H. Liu and U. H. Liaw, IEEE Photon. Technol. Lett. ,14 (2002) 1061.
[14] S. J. Chang, Y. K. Su, W. R. Chen, J. F. Chen, W. H. Lan, W. J. Lin, Y. T. Cherng, C. H. Liu and U. H. Liaw, IEEE Photon. Technol. Lett. ,14 (2002) 188.
[15] T. K. Lin, S. J. Chang, Y. K. Su, Y. Z. Chiou, C. K. Wang, C. M. Chang and B. R. Huang, IEEE Tran. Electron. Dev. ,52 (2005) 121
[16] K. Akimoto, T. Miyajima and Y. Mori, Phys. Rev. B ,39 (1989) 3138.
Chapter 4
Reference
[1] A. Bouhdada, M. Hanzaz, F. Vigue and J. P. Faurie, Appl. Phys. Lett. 83 (2003) 7
[2] E. Monroy, F. Vigue, F. Calle, J. I. Izpura, E. Munoz and J. P. Faurie, Appl. Phys. Lett. 77 (2000) 23
[3] Y. Z. Chiou, Y. K. Su, S. J. Chang, J. F. Chen, C. S. Chang, S. H. Liu, Y. C. Lin and C. H. Chen, Jpn. J. Appl. Phys. 41 (2002) 3643
[4] S. J. Chang, Y. K. Su, W. R. Chen, J. F. Chen, W. H. Lan, W. J. Lin, Y. T. Cherng, C. H. Liu and U. H. Liaw, IEEE Photon. Technol. Lett. 14 (2002) 1061
[5] F. Vigue, P. de Mierry, J. P. Faurie, E. Monroy, F. Calle, E. Munoz, Electron. Lett. 36 (2000) 9
[6] Y. M. Yu, S. Nam, B. O, K. S. Lee, P. Y. Yu, J. Lee and Y. D. Choi, J. Cryst. Growth 243 (2002) 389.
[7] X. G. Zhang, A. Rodriguez, P. Li, F. C. Jain and J. E. Ayers, J. Appl. Phys. 91 (2002) 15
[8] H. Li and W. Jie, J. Cryst. Growth 257 (2002) 110
[9] S. T. Hsu, IEEE Trans. Electron. Dev. 18 (1971) 882.
[10] T. G. M. Kleinpenning, Solid-State Electron. 22 (1979) 121.
[11] F. Vigue, E. Tournie and J. P. Faurie, IEEE J. Quan. Electron. 37 (2001) 1146
[12] F. N. Hooge, Physica 60 (1972) 130
[13] S. L. Rumyantsev, N. Pala, M. S. Shur, R. Gaska, M. E. Levinshtein, M. A. Khan, G. Simin, X. Hu and J. Yang, Electron. Lett. 37 (2001) 720
[14] L. Anghel, T. Ouisse, T. Billon, P. Lassagne and C. Jaussaud, Semicond. Conf. International 2 (1996) 539
[15] W. Wohlmuth, M. Arafa, A. Mahajan, P. Fay and I. Adesida, “InGaAs metal semiconductor metal photodetectors with engineered Schottky barrier heights,” Appl. Phys. Lett, vol. 69, no. 23, pp. 3578-3580, 2 December 1996.
[16] H. Hong and W. A. Anderson, “Cryogenic processed metal semiconductor metal (MSM) photodetectors on MBE grown ZnSe”, IEEE Transaction on Electron Devices, Vol. 46, No. 6, pp. 1127-1134, June 1999.
[17] J. I. Lee, J. Brini, A. Chovet, and C. A. Dimitriadis, “On 1/fr noise in semiconductor devices”, Solid-State Electron. 43, 2181 (1999)
[18] F. Vigue, E. Tournie and J. P. Faurie, “Evaluation of the Potential of ZnSe and Zn(Mg)BeSe Compounds for Ultraviolet Photodetection”, IEEE Journal of Quantum Electronics, Vol. 37, No. 9, pp. 1146-1152, September 2001.
[19] J. L. Pau, C. Rivera, E. Muoz, E. Calleja, U. Schhle, E. Frayssinet, B. Beaumont, J. P. Faurie and P. Gibart, J. Appl. Phys., 95, 8275, 2004.
[20] A. Bouhdada, M. Hanzaz, F. Vigu and J. P. Faurie, Appl. Phys. Lett., 83, 171, 2003.
[21] M. Mosca, J. L. Reverchon, F. Omns and J. Y. Duboz, J. Appl. Phys., 95, 4367, 2004.
[22] M. L. Lee, J. K. Sheu, Y. K. Su, S. J. Chang, W. C. Lai and G. C. Chi, IEEE Electron Dev. Lett., 25, 593, 2004.
[23] F. Vigu, P. de Mierry, J. P. Faurie, E. Monroy, F. Calle and E. Muoz, Electron. Lett., 36, 826, 2000.
[24] E. Monroy, F. Vigue, F. Calle, J. I. Izpura, E. Munoz and J. P. Faurie, Appl. Phys. Lett., 77, 2761, 2000.
[25] H. Ishikura, T. Abe, N. Fukuda, H. Kasada and K. Ando, Appl. Phys. Lett., 76, 1069, 2000.
[26] H. Hong, and W. A. Anderson, IEEE Trans. Electron Dev., Vol. 46, No. 6, June 1999
[27] H. Hong, and W. A. Anderson, IEEE Trans. Electron Dev., Vol. 46, No. 6, June 1999
[28] M. Ito, T. Kumai, H. Hamaguchi, M. Makiuchi, K. Nakai, O. Wada and T. Sakurai, Appl. Phys. Lett., 47, 1192, 1985.
[29] T. G. M. Kleinpenning, Solid-State Electron. 22, 121 1979
[30] A. L. McWhorter, Semiconductor Surface Physics, edited by R. H. Kinston (University of Pennsylvania Press, Philadelphia, 1957), pp.207-228
[31] G. Reimbold, IEEE Trans. Electron Dev., 31, 1190, 1984
[32] W. He and Z. elik-Butler, J. Vac. Sci. Technol. B, 11, 1833, 1993
[33] F. Vigu, E. Tournie and J. P. Faurie, IEEE J. Quant. Electron., 37, 1146, 2001.
Chapter 5
References
[1] R. A. Metzger, “OEIC photoreceivers,” Com. Semi., 18 (1996).
[2] Z. Lao, V. Hurm, W. Bronner, A. Hulsmann, T. Jakobus, K. Kohler, M. Ludwig, B. Raynor, J. Rosenzweig, M. Schlechtweg, and A. Thiede. IEEE Photo. Tec. Lett., Vol. 10, 710 (1998).
[3] T. M. Barnes, J. Leaf, S. Hand, C. Fry and C. A. Wolden, “A comparison of plasma-activated N2/O2 and N2O/O2 mixtures for use in ZnO:N synthesis by chemical vapor deposition”, J, Appl. Phys., Vol. 96, No. 12, pp.7036-7044, 15 December 2004.
[4] H. Kato, M. Sano, K. Miyanoto and T. Yao, “Homoepitaxial Growth of High-Quality Zn-Polar ZnO Films by Plasma-Assisted Molecular Beam Epitaxy”, Jpn. J. Appl. Phys., Vol. 42, pp. L1002-L1005, Part 2, No. 8B, 15 August 2003.
[5] Y. I. Alivov, E. V. Kalinina, A. E. Cherenkov, D. C. Look, B. M. Ataev, A. K. Omaev, M. V. Chukichev and D. M. Bagnall, “Fabrication and characterization of n-ZnO/p-AlGaN heterojunction light-emitting diodes on 6H-SiC substrates”, Appl. Phys. Lett., Vol. 83, No. 23, pp.4719-4721, 8 December 2003.
[6] N. R. Aghamalyan, R. K. Hovsepyan, A. R. Poghosyan and V. G. Lazaryan, “Photodetectors on the base of ZnO thin films”, Proc. SPIE Int. Soc. Opt. Eng. 5560, 235 (2004)
[7] S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu and H. Shen, “ZnO Schottky ultraviolet photodetectors”, J. Crystal Growth, 225 (2001) 110-113.