| 研究生: |
吳易宸 Wu, Yi-Chen |
|---|---|
| 論文名稱: |
雙足機器人之步態規劃與控制 Gait Planning and Control of a Biped Robot |
| 指導教授: |
何明字
Ho, Ming-Tzu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 231 |
| 中文關鍵詞: | 雙足機器人 、行走姿態產生器 、輔助ZMP 控制 |
| 外文關鍵詞: | Biped Robot, Walking Pattern Generator, Auxiliary ZMP Control |
| 相關次數: | 點閱:94 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在使用本實驗室先前所設計之雙足機器人的控制系統架構,加入前人所設計之力量感測器與姿態感測器,並實際運用於回授控制,實現雙足機器人步態穩定之閉迴路控制。首先在步態規劃方面,利用行走姿態產生器作為質心移動路徑之根據,取代前人質心移動軌跡之方式,結合擺線輪廓曲線法產生腳底板之跨步軌跡,並以Gazebo模擬器模擬兩者之可行性。在實作方面,建立完整之通訊橋梁,透過運用CAN匯流排傳送工業電腦PC104+所計算之各關節馬達控制命令至各馬達驅動控制器。感測器方面,以姿態感測器量測行進間之姿態變化,並回傳至工業電腦,以此作為閉迴路控制之依據;利用力量感測器解算雙足機器人之零矩合點,以作為判斷機器人穩定性之重要根據。最後運用輔助ZMP控制方法,測試雙足機器人下地行走之可行性及穩定性,並比較開迴路系統與閉迴路系統之行為。顯示出運用輔助ZMP之閉迴路控制系統對於雙足機器人步態之穩定性能夠有所提升。
This thesis aims to use the force sensors and attitude sensor to the previously built bipedal robotic control system to achieve the biped robot gait closed-loop feedback control. In gait planning, the walking pattern generator is used to generate the center of mass movement path instead of direct use of the center of mass movement developed previously. By combining the walking pattern generator and the stepping trajectory of the cycloidal profile, the walking control system is simulated in Gazebo to verify the feasibility. In the implementation, the CAN bus is used to transmit the position commands to each joint motor drive from an industrial computer PC104+. The attitude sensor is used to measure attitude changes during walking, and measured data is sent back to the industrial computer for feedback control. Force sensors are used to obtain the zero moment point of the biped robot, and it is an essential basis for evaluating the stability of the robot. Finally, the ability and stability of the biped robot walking on the ground are tested with the auxiliary ZMP control method. Performance comparison between the open loop control and closed-loop control is presented. It is shown that the stability of the gait of the biped robot is improved by the closed-loop system using the auxiliary ZMP control method.
[1] 趙冠舜,「以Linux-RTAI為基礎之雙足機器人機電整合設計與實現」,國立成功大學工程科學系碩士論文,民國一○一年七月。
[2] 林子欽,「六軸力感測器研發與雙足機器人之結構分析」,國立成功大學工程科學系碩士論文,民國一○二年六月。
[3] 黃彥翔,「姿態航向參考系統研發與雙足機器人之步態規劃」,國立成功大學工程科學系碩士論文,民國一○三年七月。
[4] 鍾東霖,「雙足機器人步態規劃與實現」,國立成功大學工程科學系碩士論文,民國一○五年七月。
[5] 鄭詠全,「基於ROS之雙足機器人步態模擬」,國立成功大學工程科學系碩士論文,民國一○八年七月。
[6] S. Kajita, H. Hirukawa, K. Harada, and K. Yokoi, Introduction to Humanoid Robotics, Springer-Verlag, Berlin, 2014.
[7] S. Kajita, M. Morisawa, K. Harada, K. Kaneko, F. Kanehiro, K. Fujiwara, and H. Hirukawa, “Biped Walking Pattern Generator Allowing Auxiliary ZMP Control,” Proceedings of 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2993-2999, Oct. 2006.
[8] MATLAB, http://www.mathworks.com/
[9] GAZEBO, http://gazebosim.org/
[10] M. Vukobratović, B. Brovac, D. Surla, and D. Stokic, Biped Locomotion, Springer-Verlag, New York, 1990.
[11] 盧兆慶,「雙足機器人之步態規劃與感測系統建置」,國立台灣大學工學院機械工程學系碩士論文,民國九十九年七月。
[12] 趙毓文,「雙足機器人之機電整合與腳步協調規劃與控制」,國立台灣大學工學院機械工程學研究所碩士論文,民國九十九年七月。
[13] 李佳益,「Linux多執行緒即時控制系統之實現」,國立成功大學工程科學系碩士論文,民國九十七年七月。
[14] 陳震豪,「利用PC/104+與Linux-RTAI之即時多工控制系統的實現」,國立成功大學工程科學系碩士論文,民國九十八年七月。
[15] 許志源,「在PC/104+與CAN BUS架構下實現以Linux-RTAI為基礎之分散式即時監控系統」,國立成功大學工程科學系碩士論文,民國九十九年七月。
[16] 簡誌佑,「以Linux-RTAI為基礎之機器人足部設計與實現」,國立成功大學工程科學系碩士論文,民國一○○年七月。
[17] Maxon Motor, https://www.maxongroup.com/
[18] General Purpose Strain Gages- Linear Pattern, Vishay Precision Group, 2017.
[19] 惠斯登電橋溫度補償,http://www.sanlien.com/web/homepage.nsf/foundationview/E46673D58B70D5944825714D003886B6
[20] Triaxial Inertial Sensor with Magnetometer ADIS16400/ADIS16405,
http://www.analog.com/static/imported-files/data_sheets/ADIS16400_16405.pdf
[21] A. M. Sabatini, “Quaternion-based Extended Kalman Filter for Determining Orientation by Inertial and Magnetic Sensing,” IEEE Transactions on Biomedical Engineering, Vol. 53, No. 7, pp.1346-1356, Jul. 2006.
[22] E. Bekir, Introduction to Modern Navigation Systems, World Scientific Publishing Company, Singapore, 2007.
[23] PCM-3380 User Manual, 2nd ed., Advantech, 2006.
[24] SJA1000 Stand-Alone CAN Controller Datasheet, Philips Inc., 2000.
[25] SN65HVD232 3.3-V CAN Transceivers Datasheet, Texas Instruments Inc., 2001-2006.
[26] A3941 Automotive Full Bridge MOSFET Driver, Allegro Inc., 2008.
[27] ACS-712 Fully Integrated, Hall Effect-Based Linear Current Sensor with 2.1 kVRMS Voltage Isolation and a Low-Resistance Current Conductor, Allegro Inc., 2006.
[28] R. M. Rogers, Applied Mathematics in Integrated Navigation Systems, 2nd ed., AIAA Education Series, Reston, 2003.
[29] R. E. Kalman, “A New Approach to Linear Filtering and Prediction Problems,” Journal of Basic Engineering, Vol. 82, No. 1, pp. 35-45, Mar. 1960.
[30] 楊宗諭,「以顏色為基礎之多相機追蹤控制系統設計與實現」,國立成功大學工程科學系碩士論文,民國一○一年。
[31] D. Titterton and J. Weston, Strapdown Inertial Navigation Technology, 2nd ed., IET, London, 2004.
[32] K.S. Fu, R.C. Gonzalez, and C.S.G. Lee, Robotics: Control, Sensing, Vision, and Intelligence, McGraw-Hill, Singapore, 1987.
[33] D.L. Pieper, The Kinematics of Manipulators under Computer Control, Ph.D. dissertation, Stanford Univ., 1968.
[34] M. A. Ali, H. A. Park, and C.S. G. Lee, “Closed-Form Inverse Kinematic Joint Solution for Humanoid Robots,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 704-709, Oct. 2010.
[35] ROS, https://www.ros.org/
[36] Simulink, https://www.mathworks.com/products/simulink.html
[37] SDFormat, http://sdformat.org/
[38] urdf, http://wiki.ros.org/urdf/XML/model
[39] ROS control, http://gazebosim.org/tutorials/?tut=ros_control
[40] J.L. Marins, X. Yun, E.R. Bachmann, R.B. McGhee, and M.J. Zyda, “An Extended Kalman Filter for Quaternion-Based Orientation Estimation Using MARG Sensors,” Proceedings of 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vol.4, pp. 2003-2011, Oct. 2001.
[41] Asimo robot, https://asimo.honda.com/
[42] QRIO, https://en.wikipedia.org/wiki/QRIO
[43] HRP-2, https://kawadarobot.co.jp/product/index_en.html
[44] T.S. Li, Y.T. Su, S.H. Liu, J.J. Hu, and C.C. Chen, “Dynamic Balance Control for Biped Robot Walking Using Sensor Fusion, Kalman Filter, and Fuzzy Logic,” IEEE Transactions on Industrial Electronics, Vol. 59, No. 11, pp. 4394-4408, Nov. 2012.
[45] R.C. Luo and C.C. Chen, “Biped Walking Trajectory Generator Based on Three-Mass With Angular Momentum Model Using Model Predictive Control,” IEEE Transactions on Industrial Electronics, Vol. 63, No. 1, pp. 268-276, Jan. 2016.
[46] K. Hu, C. Ott, and D. Lee, “Learning and Generalization of Compensative Zero-Moment Point Trajectory for Biped Walking,” IEEE Transactions on Robotics, Vol. 32, No. 3, pp. 717-725, Jun. 2016.