簡易檢索 / 詳目顯示

研究生: 游盛元
Yu, Sheng-Yuan
論文名稱: 以社會影響觀點探討用戶使用行動支付之考量因素
Exploring the Factors of Using Mobile Payment From the Perspective of Social Influence
指導教授: 莊双喜
Chuang, Shuang-Shii
學位類別: 碩士
Master
系所名稱: 管理學院 - 企業管理學系
Department of Business Administration
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 77
中文關鍵詞: 科技接受模式社會影響認知關鍵多數行動支付
外文關鍵詞: Technology Acceptance Model, Social Influence, Perceived Critical Mass, Mobile Payment
相關次數: 點閱:192下載:25
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 金融科技在近年來一直是被深入探討的議題,其涵蓋領域相當廣泛,諸如傳統銀行的業務都能見其蹤影,舉凡支付、投資、融資、保險、投資顧問等都逐漸出現新興的挑戰者公司,侵蝕傳統銀行的獲利。而就在2021年4月更有純網銀「LINE Bank」開始正式營運,為台灣的金融科技發展進程再立下新的里程碑。行動支付在所有的金融科技領域中是最容易也是門檻最低的業務,在過去的十年以來我們也可以看到市面上大部分的服務提供業者並非傳統銀行,相反的是一些本業並非金融的公司。而這些公司的表現,從獲利或是市占的角度評估都向我們展示了並非只有銀行能夠提供較好的業務。目前提供行動支付服務的公司,截至2021年2月台灣共有5家專營機構及23家兼營機構。然而以通訊軟體起家的「LINE Pay」市占率卻有著顯著性的差異,為本研究提供了研究方向。
    本研究認為「LINE Pay」之成功關鍵因素在於其通訊軟體本身之特性,強化其在創新推廣的初期,能夠為其帶來討論及話題性,進而引起從眾行為,並快速達成關鍵多數,造就其在行動支付領域難以被撼動的地位。本研究以問卷調查法方式,於Facebook、LINE、PTT之社團、群組、討論版中發放問卷,總計共回收928份問卷,在扣除填答邏輯不一致及重複填答之無效問卷後,總計共800份問卷,另外再扣除非受測對象後,總計共560份有效問卷進行分析研究。
    研究結果顯示,規範性社會影響正向影響認知有用性、資訊性社會影響正向影響認知有用性、認知易用性正向影響認知有用性、認知有用性及認知易用性正向影響使用意圖,且認知有用性於規範性社會影響及使用意圖間存在「部分中介」效果、認知有用性於資訊性社會影響及使用意圖間存在「完全中介」效果,並據此提出未來研究方向之改善與建議。

    As of February 2021, there are 28 mobile payment providers in Taiwan. The most eye-catching one, LINE Pay, started with communication software, LINE, has already shown great success, providing a research direction to this study. The aim of this study is to identify whether social influence plays a key role in mobile payment services. This study proposed an extended TAM model which considers social influence as external variables. 560 valid data are used to do simple regression analysis and the results showed that(1) both Normative Social Influence and Informative Social Influence have positive effects toward Perceived Usefulness but (2) the positive effects of Normative Social Influence and Informative Social Influence toward Perceived Usefulness are not significant. (3) Both Perceived Usefulness and Perceived Ease of Use have positive effects toward Usage Intention and (4) the mediation effect of Perceived Usefulness is significant. However, (5) the moderating effect of Perceived Critical Mass is not significant.

    第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的與問題 3 第三節 研究架構與流程 4 第二章 文獻回顧 6 第一節 第三方支付、電子票證與行動支付 6 第二節 科技接受模式 9 第三節 社會影響 14 第四節 認知關鍵多數 19 第三章 研究方法 22 第一節 研究架構 22 第二節 研究假設 24 第三節 問卷設計 27 第四節 資料蒐集方法 31 第五節 資料分析方法 32 第四章 資料分析與結果 33 第一節 樣本結構分析 33 第二節 信度分析與敘述性統計 37 第三節 驗證性因素分析 46 第四節 Pearson相關分析 49 第五節 線性迴歸分析 51 第五章 結論與建議 60 第一節 研究結論 60 第二節 研究貢獻 64 第三節 研究限制與未來研究建議 66 參考文獻 68 英文文獻 68 中文文獻 76

    英文文獻
    Adams, J., Puskasrozsa, S., Simlar, J., & Wilke, C. M. (1992). ADAPTATION AND MAJOR CHROMOSOMAL CHANGES IN POPULATIONS OF SACCHAROMYCES-CEREVISIAE. Current Genetics, 22(1), 13-19. doi:10.1007/bf00351736
    Agarwal, R., & Prasad, J. (1999). Are individual differences germane to the acceptance of new information technologies? Decision Sciences, 30(2), 361-391.
    Ajzen, I. (1991). The theory of planned behavior. Orgnizational Behavior and Human Decision Processes, 50, 179–211. In.
    Ajzen, I., & Fishbein, M. (1980). Theory of Reasoned Action in understanding attitudes and predicting social behaviour. Journal of Social Psychology.
    Alavi, M. (1984). An assessment of the prototyping approach to information systems development. Communications of the ACM, 27(6), 556-563.
    Alavi, M., & Henderson, J. C. (1981). An evolutionary strategy for implementing a decision support system. Management Science, 27(11), 1309-1323.
    Baby, A., & Kannammal, A. (2020). Network Path Analysis for developing an enhanced TAM model: A user-centric e-learning perspective. Computers in Human Behavior, 107, 106081.
    Bearden, W. O., Calcich, S. E., Netemeyer, R., & Teel, J. E. (1986). An exploratory investigation of consumer innovativeness and interpersonal influences. ACR North American Advances.
    Bearden, W. O., & Etzel, M. J. (1982). Reference group influence on product and brand purchase decisions. Journal of Consumer Research, 9(2), 183-194.
    Bearden, W. O., Netemeyer, R. G., & Teel, J. E. (1989). Measurement of consumer susceptibility to interpersonal influence. Journal of Consumer Research, 15(4), 473-481.
    Belk, R. (2007). Why not share rather than own? The Annals of the American Academy of Political and Social Science, 611(1), 126-140.
    Bewley, W. L., Roberts, T. L., Schroit, D., & Verplank, W. L. (1983). Human factors testing in the design of Xerox's 8010 “Star” office workstation. Paper presented at the Proceedings of the SIGCHI conference on Human Factors in Computing Systems.
    Bouwman, H., Haaker, T., & De Vos, H. (2007). Mobile service bundles: the example of navigation services. Electronic Markets, 17(1), 20-28.
    Branscomb, L. M., & Thomas, J. C. (1984). Ease of use: A system design challenge. IBM Systems Journal, 23(3), 224-235.
    Burton-Jones, A., & Hubona, G. S. (2005). Individual differences and usage behavior: revisiting a technology acceptance model assumption. ACM SIGMIS Database: the DATABASE for Advances in Information Systems, 36(2), 58-77.
    Chen, L.-d. (2008). A model of consumer acceptance of mobile payment. International Journal of Mobile Communications, 6(1), 32-52.
    Cho, H. (2011). Theoretical intersections among social influences, beliefs, and intentions in the context of 3G mobile services in Singapore: Decomposing perceived critical mass and subjective norms. Journal of Communication, 61(2), 283-306.
    Dahlberg, T., & Oorni, A. (2007). Understanding changes in consumer payment habits-do mobile payments and electronic invoices attract consumers? Paper presented at the 2007 40th Annual Hawaii International Conference on System Sciences (HICSS'07).
    Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 319-340.
    Davis, F. D. (1993). User acceptance of information technology: system characteristics, user perceptions and behavioral impacts. International Journal of Man-machine Studies, 38(3), 475-487.
    Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982-1003.
    Deutsch, M., & Gerard, H. B. (1955). A study of normative and informational social influences upon individual judgment. The Journal of Abnormal and Social Psychology, 51(3), 629.
    Ellison, N., Steinfield, C., & Lampe, C. (2006). Spatially bounded online social networks and social capital. International Communication Association, 36(1-37).
    Fulk, J. (1993). Social construction of communication technology. Academy of Management Journal, 36(4), 921–950.
    Gould, J. D., & Lewis, C. (1985). Designing for usability: key principles and what designers think. Communications of the ACM, 28(3), 300-311.
    Hofstede, G. (2001). Culture's consequences: Comparing values, behaviors, institutions and organizations across nations: Sage publications.
    Hong, S.-J., & Tam, K. Y. (2006). Understanding the adoption of multipurpose information appliances: The case of mobile data services. Information Systems Research, 17(2), 162-179.
    Hovland, C. I., & Janis, I. L. (1959). Personality and persuasibility.
    Hovland, C. I., Janis, I. L., & Kelley, H. H. (1953). Communication and persuasion.
    Hovland, C. I., & Weiss, W. (1951). The influence of source credibility on communication effectiveness. Public Opinion Quarterly, 15(4), 635-650.
    Hsu, C.-L., & Lu, H.-P. (2004). Why do people play on-line games? An extended TAM with social influences and flow experience. Information & Management, 41(7), 853-868.
    Igbaria, M., Zinatelli, N., Cragg, P., & Cavaye, A. L. (1997). Personal computing acceptance factors in small firms: a structural equation model. MIS Quarterly, 279-305.
    Ilie, V., Van Slyke, C., Green, G., & Lou, H. (2005). Gender differences in perceptions and use of communication technologies: A diffusion of innovation approach. Information Resources Management Journal (IRMJ), 18(3), 13-31.
    Jahoda, M. (1959). Conformity and independence: A psychological analysis. Human Relations, 12(2), 99-120.
    Jones, E., E., Gerard, & B., H. (1967). Social Psychology. New York: John Wiley & Sons.
    Jones, E., & Gerard, H. (1967). Foundations of social psychology. John Whiley & Sons. Inc., Sydney.
    Jones, E. E. (1972). Attribution: Perceiving the Causes of Behaviour: General Learning Publishing.
    Kang, M., & Kim, Y. G. (2010). A multilevel view on interpersonal knowledge transfer. Journal of the American Society for Information Science and Technology, 61(3), 483-494.
    Katz, M. L., & Shapiro, C. (1985). Network externalities, competition, and compatibility. The American Economic Review, 75(3), 424-440.
    Kelman, H. C. (1961). Processes of opinion change: Routledge.
    Kim, C., Mirusmonov, M., & Lee, I. (2010). An empirical examination of factors influencing the intention to use mobile payment. Computers in Human Behavior, 26(3), 310-322.
    Kim, H.-W., Chan, H. C., & Gupta, S. (2007). Value-based adoption of mobile internet: an empirical investigation. Decision Support Systems, 43(1), 111-126.
    López-Nicolás, C., Molina-Castillo, F. J., & Bouwman, H. (2008a). An assessment of advanced mobile services acceptance: Contributions from TAM and diffusion theory models. Information & Management, 45(6), 359-364.
    López-Nicolás, C., Molina-Castillo, F. J., & Bouwman, H. (2008b). Explaining mobile commerce services adoption by different type of customers. Information & Management, 45, 359–364.
    Li, Q., & Liu, Z. (2008). The Role of Social Referents in Consumer'E-Commerce Adoption in China. Paper presented at the 2008 4th International Conference on Wireless Communications, Networking and Mobile Computing.
    Lin, J. C.-C., & Liu, E. S.-Y. (2009). The adoption behaviour for mobile video call services. International Journal of Mobile Communications, 7(6), 646-666.
    Lou, H., Luo, W., & Strong, D. (2000). Perceived critical mass effect on groupware acceptance. European Journal of Information Systems, 9(2), 91-103.
    Mallat, N. (2007). Exploring consumer adoption of mobile payments–A qualitative study. The Journal of Strategic Information Systems, 16(4), 413-432.
    Mallat, N., Rossi, M., Tuunainen, V. K., & Öörni, A. (2009). The impact of use context on mobile services acceptance: The case of mobile ticketing. Information & Management, 46(3), 190-195.
    Markus, H. R., & Kitayama, S. (1994). A collective fear of the collective: Implications for selves and theories of selves. Personality and Social Psychology Bulletin, 20(5), 568-579.
    McCloskey, D. W. (2006). The importance of ease of use, usefulness, and trust to online consumers: An examination of the technology acceptance model with older customers. Journal of Organizational and End User Computing (JOEUC), 18(3), 47-65.
    Mohammad, M. A., Alhalaweh, A., & Velaga, S. P. (2011). Hansen solubility parameter as a tool to predict cocrystal formation. International Journal of Pharmaceutics, 407(1-2), 63-71.
    Moon, J.-W., & Kim, Y.-G. (2001). Extending the TAM for a World-Wide-Web context. Information & Management, 38(4), 217-230.
    Nickerson, R. S. (1981). Why interactive computer systems are sometimes not used by people who might benefit from them. International journal of Man-machine Studies, 15, 469-483.
    Oliver, P., Marwell, G., & Teixeira, R. (1985). A theory of the critical mass. I. Interdependence, group heterogeneity, and the production of collective action. American Journal of Sociology, 91(3), 522-556.
    Oliver, P. E., & Marwell, G. (2001). Whatever happened to critical mass theory? A retrospective and assessment. Sociological Theory, 19(3), 292-311.
    Olson, M. (1965). The logic of collective action, cambridge, mass. Harvard Univ. Pr.
    Park, C. W., & Lessig, V. P. (1977). Students and housewives: Differences in susceptibility to reference group influence. Journal of Consumer Research, 4(2), 102-110.
    Pousttchi, K., & Goeke, L. (2010). Determinants of customer acceptance for mobile data services: an empirical analysis with formative constructs International Journal of Electronic Business, 9.
    Radin, R. F., & Stevenson, W. B. (2006). Comparing mutual fund governance and corporate governance. Corporate Governance: An International Review, 14(5), 367-376.
    Rafique, H., Almagrabi, A. O., Shamim, A., Anwar, F., & Bashir, A. K. (2020). Investigating the acceptance of mobile library applications with an extended technology acceptance model (TAM). Computers & Education, 145, 103732.
    Rogers, E. M. (1995). Diffusion of innovations: Routledge.
    Samuelson, W., & Zeckhauser, R. (1988). Status quo bias in decision making. Journal of Risk and Uncertainty, 1(1), 7-59.
    Schepers, J., & Wetzels, M. (2007). A meta-analysis of the technology acceptance model: Investigating subjective norm and moderation effects. Information & Management, 44(1), 90-103.
    Scherer, R., Siddiq, F., & Tondeur, J. (2019). The technology acceptance model (TAM): A meta-analytic structural equation modeling approach to explaining teachers’ adoption of digital technology in education. Computers & Education, 128, 13-35.
    Schierz, P. G., Schilke, O., & Wirtz, B. W. (2010). Understanding consumer acceptance of mobile payment services: An empirical analysis. Electronic Commerce Research and Applications, 9(3), 209-216.
    Straub, D., Limayem, M., & Karahanna-Evaristo, E. (1995). Measuring system usage: Implications for IS theory testing. Management Science, 41(8), 1328-1342.
    Swanson, E. B. (1988). Information system implementation: Bridging the gap between design and utilization: McGraw-Hill/Irwin.
    Szajna, B. (1996). Empirical evaluation of the revised technology acceptance model. Management Science, 42(1), 85-92.
    Taylor, S., & Todd, P. (1995). Decomposition and crossover effects in the theory of planned behavior: A study of consumer adoption intentions. International Journal of Research in Marketing, 12(2), 137-155.
    Van Slyke, C., Ilie, V., Lou, H., & Stafford, T. (2007). Perceived critical mass and the adoption of a communication technology. European Journal of Information Systems, 16(3), 270-283.
    Venkatesh, V. (1999). Creation of favorable user perceptions: Exploring the role of intrinsic motivation. MIS Quarterly, 239-260.
    Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186-204.
    Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 425-478.
    Venkatesh, V., Speier, C., & Morris, M. G. (2002). User acceptance enablers in individual decision making about technology: Toward an integrated model. Decision Sciences, 33(2), 297-316.
    Wallace, L. G., & Sheetz, S. D. (2014). The adoption of software measures: A technology acceptance model (TAM) perspective. Information & Management, 51(2), 249-259.
    Yang, S., Lu, Y., Gupta, S., Cao, Y., & Zhang, R. (2012). Mobile payment services adoption across time: An empirical study of the effects of behavioral beliefs, social influences, and personal traits. Computers in Human Behavior, 28(1), 129-142.
    Zhu, S., & Chen, J. (2016). E-commerce use in urbanising China: the role of normative social influence. Behaviour & Information Technology, 35(5), 357-367.

    中文文獻
    工商時報. (2021). 金管會喊出新目標:非現金支付三年拚6兆.
    金融監督管理委員會. (2016). 金管會主任委員以行動力挺行動支付.
    金融監督管理委員會. (2021). 110年2月份信用卡、現金卡、電子票證及電子支付機構業務資訊.
    資策會產業情報研究所. (2021). 【2020下半年行動支付大調查】六成消費者常用行動支付 比例首度超越電子票證.
    數位時代. (2018). LINE台灣月活躍用戶破2,100萬,特愛三大功能、使用率名列全球第一.
    數位時代. (2020). 每2.8人就有1人用LINE Pay、街口用戶破350萬,兩大支付龍頭下個考驗是什麼?.
    李奕宣. (2013). 手機遊戲 App 持續使用意圖之研究. 臺灣大學資訊管理學研究所學位論文, 1-60.
    徐明慧. (2012). 從期望失驗理論與企業社會責任探討網路購物之再購意願-以網路服飾為例. 成功大學企業管理學系學位論文, 1-98.
    許力云, & 牟鍾福. (2018). 以科技接受模式, 創新擴散探討 Nike^+ Running App 的使用行為. 休閒保健期刊(20), 17-49.
    許博剴. (2017). 探討虛擬社群意識, 認知互動, 認知關鍵多數對社群參與之影響-以臉書社團為例. 淡江大學資訊傳播學系碩士班學位論文, 1-97.
    許麗玲, 徐村和, 唐嘉偉, & 陳嘉奇. (2011). 社會影響與社群特性對於部落客任務價值及 Blog 持續使用意圖之影響. 電子商務學報, 13(4), 781-816.
    陳建文, 吳紹榮, 余姵歆, & 袁綾. (2015). Facebook 粉絲專頁對網路持續使用行為意圖之影響: 以使用與滿足理論與社會影響觀點. 朝陽商管評論, 14(S), 19-38.
    鄭宇翔. (2015). 從科技接受與創新擴散探討 iBeacon 發展的關鍵因素. 樹德科技大學資訊管理系碩士班學位論文, 1-43.
    謝宜軒(2016)。以科技接受模式與創新擴散理論探討UBER之使用意圖。國立勤益科技大學資訊管理系碩士論文.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE