簡易檢索 / 詳目顯示

研究生: 許壬己
Hsu, Jen-Chi
論文名稱: 水噴流衝擊冷卻之熱分析與最佳化
Thermal Analysis and Optimization of a Water Jet Impingement Cooling
指導教授: 楊玉姿
Yang, Yue-Tzu
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 118
中文關鍵詞: 液體衝擊噴流共軛熱傳紊流最佳化反應曲面法基因演算法
外文關鍵詞: liquid jet impingement, conjugate heat transfer, turbulent flow, optimum, response surface methodology, genetic algorithm method
相關次數: 點閱:102下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要以數值模擬研究具自由液面液體衝擊噴流冷卻之流場與熱傳特性。文中選用狹長型噴口垂直衝擊於一平板來進行模擬,且工作流體為水。紊流統御方程式是以控制體積法為基礎,配合冪次法則有限差分法與著名的k-ε紊流模式及其相關之牆函數來求解與描述紊流結構。
    數值計算採用以下參數,雷諾數Red(11000≦Red≦17000)、無因次衝擊高度H/do(3≦H/do≦12)、無因次噴嘴寬度B/do(1≦B/do≦2)以及熱通量(140kW/m2≦q’’≦280 kW/m2),並將本文中所採用的理論模式與文獻中已發表的實驗數據作數值預測值的驗證。在此研究範圍中,無因次衝擊高度H/do=3~12的局部水力直徑紐塞數Nud 最大值均產生在停滯點,並沿其平板兩側逐漸減小,另外當增加無因次噴口寬度B/do時會增加局部紐賽數Nud之最大值。當雷諾數固定時,增加無因次噴口寬度B/do,並將無因次高度調整在H/do=6.17~12,也會使得平均紐塞數Nu增加。
    此外,將模擬結果與文獻中可用實驗數據做仔細的驗證後,再利用反應曲面法(response surface methodology)和基因演算法(genetic algorithm method)來對入口幾何形狀以及衝擊高度作最佳化。對於本物理模型而言,其最佳化設計的結果是在H/do=7.86和B/do=2 。

    In this study, the fluid flow and heat transfer characteristics of a free surface liquid jet impingement cooling have been investigated numerically. The slot jet nozzle impinging normally on a flat plate are employed and the impinging coolant is water. The turbulent governing equations are solved by a control-volume-based finite-difference method with power-law scheme and the well-know turbulence model and its associate wall function to describe the turbulent structure.
    Numerical computations have been conducted with variations of jet exit Reynolds numberRed(11000≦Red≦17000), dimensionless jet-to-surface distanceH/do(3≦H/do≦12), dimensionless jet widthB/do(1≦B/do≦2) and the heat flux(140kW/m2≦q’’≦280 kW/m2). The theoretical model developed is validated by comparing the numerical predictions with available experimental data in the literature. In these studied ranges, the variations of local Nusselt numbers by hydraulic diameter Nud of the dimensionless jet-to-surface distance H/do=3~12 along the flat plate decrease monotonically from its maximum value at the stagnation point. Moreover, the maximum value of (Nud) increases with the increase in the jet width B/do . As the Reynolds number fixes, the value of average Nusselt (NU) increases when jet width B/do increases and jet-to-surface distance is .

    In addition, the shape of the inlet area and jet-to-surface distance are optimized by using response surface methodology (RSM) and genetic algorithm (GA) method after solutions are carefully validated with available experimental results in the literature. Based on the optimal results, the optimum condition is in H/do=7.86 and B/do=2 for this physical model

    中文摘要 I 英文摘要 II 誌謝 IV 目錄 V 表目錄 IX 圖目錄 X 符號說明 XV 第一章 緒論 1 1-1 研究動機及背景 1 1-2 文獻回顧 2 1-3 本文探討之主題及方法 6 第二章 理論分析 10 2-1 空間流場解析 10 2-1.1 流體體積法 11 2-1.1 統御方程式 12 2-2 紊流模式 14 2-2.1渦流黏滯模式 15 2-2.2標準k-ε模式 16 2-2.3牆函數法 17 2-3 邊界條件 21 2-4 數據計算 24 第三章 數值方法 27 3-1 概述 27 3-2 格點位置的配置 28 3-3 ψ之差分方程式 29 3-4 自由液面附近的差分方程式 32 3-5 u、v、w動量方程式之差分方程式 33 3-5.1壓力修正方程式 33 3-6 收斂條件 36 3-7 差分方程式解法 36 3-7.1數值程序 37 第四章 最佳化設計 41 4-1 概述 .41 4-2 反應曲面法 42 4-3 迴歸分析 43 4-3.1 變異分析 44 4-4 基因演算法 47 4-4.1 適應度 49 4-4.2 基因演算法編碼方式 50 4-4.3基本基因演算法算子 50 4-4.4 終止條件 54 第五章 結果與討論 62 5-1 數值驗證與網格獨立 62 5-2流場與溫度場之特性分析 66 5-2.1原尺寸實驗噴流之特性分析 66 5-2.2 不同衝擊高度之影響 67 5-2.3 固定入口截面積,不同噴口寬度之影響 69 5-3最佳化設計 70 5-3.1 反應曲面法與基因演算法之最佳化 71 5-4最佳組幾何之熱分析 72 5-4.1最佳組與原實驗尺寸之性能比較 72 5-4.2最佳組尺寸之熱分析 73 第六章 結論與建議 109 6-1 結論 109 6-2 建議 110 參考文獻 112

    參考文獻
    [1] Glauert M.B., “The Wall Jet”, Journal of Fluid Mechanics, Vol. 1, No. 6, pp. 625-643, 1956.
    [2] Gardon R., Akfirat J.C., “Heat Transfer Characteristics of Impinging Two-dimensional Air Jets”, ASME, J. Heat Transfer, Vol. 88, pp. 101-108, 1966.
    [3] Kercher D.M. and Tabakoff, W., “Heat Transfer by a Square Array of Round Air Jets Impinging Perpendicular to a Flat Surface Including the Effect of Spent Air”, J. Eng. Power, Vol. 92, pp. 73-82, 1970.
    [4] Becko Y., “Impingement Cooling - A Review”, Von Karman Institute for Fluid Dynamic, Lecture Series 83, Turbine Blade Cooling, 1976.
    [5] Martin H., “Heat and Mass Transfer between Impinging Gas Jet and Solid Surfaces”, Advances in Heat Transfer, Vol. 13, pp. 1-60, 1977.
    [6] Goldstein R.J. and Timmers J.F., “Visualization of Heat Transfer from Arrays of Impinging Jets”, Int. J. Heat and Mass Transfer, Vol. 25, No. 12, pp. 1857-1868, 1982.
    [7] Sherif S. A. and Pletcher R. H., “Measurements of the Thermal Characteristics of Heated Turbulent Jets in Crossflow”, J. Heat Transfer, Vol. 111, pp. 897-903, 1989.
    [8] Goldstein R. J., Sobolik K. A., and Sool W. S., “Effect of Entrainment on the Heat Transfer to A Heated Circular Air Jet Impinging on a Flat Surface”, ASME, J. Heat Transfer, Vol. 112, pp. 608-611, 1990.
    [9] Liu X., Lienhard J. H., and Lombara J. S., “Convective Heat Transfer by Impingement of Circular Liquid Jets”, ASME, J. Heat Transfer, Vol. 113, No3, pp. 571-582, 1991.
    [10] Jambunathan K, Lai E, Moss M.A., Button B.L., “A Review of Heat Transfer Data for Single Circular Jet Impingement”, Int. J. Heat Fluid Flow ,Vol. 13 ,pp.106-115, 1992.
    [11] Viskanta R., “Heat Transfer to Impinging Isothermal Gas and Flame Jets”, Experimental Thermal and Fluid Science, Vol. 6, pp. 111 – 134, 1993
    [12] Womac D.J., Ramadhyani S., Incropera F.P.. “Correlating Equation for Impingement Cooling of Small Heat Source With Single Circular Liquid Jets”, ASME, J. Heat Transfer, vol.115, 106-115, 1993.
    [13] Watson E.J., “The Radial Spread of a Liquid Jet over a Horizontal Plane, ” Journal of Fluid Mechanics Vol.20 pp.481–499 1964.
    [14] Miyasaka Y., Inada S., “The Effect of Pure Forced Convection on the Boiling Heat Transfer between a Two-dimensional Subcooled Water Jet and a Heated Surface, ”Journal of Chemical Engineering of Japan, Vol.13, pp.22–28,1980.
    [15] Inada S., Miyasaka Y., Izumi R., “A Study of the Laminar Flow Heat Transfer between a Two-dimensional Water Jet and a Flat Surface with Constant Heat Flux, ”Bulletin of the JSME ,Vol.24 pp.1803–1810,1981.
    [16] Jili L.M. and Dagon Z., “Experimental Investigation of Single Phase Multi-Jet Impingement Cooling of An Array of Microelectronic Heat Source”, Proceedings of the International Symposium on Cooling Technology for Electronic Equipment, pp. 265-283, 1987.
    [17] Wang E.N., Zhang L., Jiang L., Koo J.M., Goodson K.E. and Kenny T.W., “Micromachined Jets Arrays for Liquid Impingement Cooling of VLSI Chips”, Solid-State Sensor, Actuator and Micro Systems Workshop, pp. 46-49, 2002.
    [18] Vader D.T., Incropera F.P., Viskanta R., “Local Convective Heat Transfer from a Heated Surface to an Impinging Planar Jet of Water, ” Int. J. Heat and Mass Transfer,Vol.34 pp.611–623, 1991.
    [19] Vader D.T., Incropera F.P., Viskanta R., “Convective Nucleate Boiling on a Heated Surface Cooled by an Impinging, Planar Jet of Water,” ASME, J. Heat Transfer, Vol. 114, pp.152–160, 1992.
    [20] Elison B., and Webb B. W., “Local Heat Transfer to Impinging Liquid Jets in the Initially Laminar, Transitional, and Turbulent Regimes”, Int. J. Heat and Mass Transfer, Vol. 37, No. 8, pp. 1207-1216, 1994
    [21] Ma C. F., Zhuang Y., Lee S. C., and Gomi, T., “Impingement Heat Transfer and Recovery Effect with Submerged Jets of Large Prandtl Number Liquid-II. Initially Laminar Confined Slot Jets”, Int. J. Heat and Mass Transfer, Vol. 40, No. 6, pp. 1491-1500, 1997.
    [22] Nakabe, K., Suzuki,K., Inaoka, K., Higashio, A., Acton, J.S., Chen, W.,“Generation of Longitudinal Vortices in internal Flows with an Inclined Impinging Jet and Enhancement of Target Plate Heat Transfer”, Int. J. Heat Fluid Flow 19, pp. 573-581, 1998.
    [23] Rahman M. M. and Lallave J. C., “A Comprehensive Study of Conjugate Heat Transfer During Free Liquid Jet Impingement on a Rotating Disk,” Numerical Heat Transfer, Part A, Vol. 51, pp. 1041–1064, 2007.
    [24] Rahman M. M., Hernandez F.C., Lallave J. C., “Free Liquid Jet Impingement From a Slot Nozzle to a Curved Plate,” Numerical Heat Transfer, Part A, Vol. 57, pp. 799–821, 2010.
    [25] Fujimoto H, Ohno D, Hama T, Takuda H, “Numerical Study of a Planar Liquid Jet Impinging on a Solid Substrate” ISIJ International, Vol. 48, No. 5, pp. 603–610, 2008.
    [26] Ibuki K., Umeda T., Fujimoto H, Takuda H, “Heat transfer characteristics of a planar water jet impinging normally or obliquely on a flat surface at relatively low Reynolds numbers” Experimental Thermal and Fluid Science, Vol. 33, pp.1226-1234, 2009.
    [27] Hirt C. W., and Nichols B. D., “Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries,” Journal of Computional Physics, Vol. 39, pp. 201-225, 1981.
    [28] Launder, B.E., Spalding, D.B., “The Numerical Computation of Turbulent Flow, ” Computer Method in Applied Mechanics and Engineering 3, 269-289, 1972.
    [29] Serag-Eldin M.A., Spalding D.B.,“Computation of Three- Dimensional Gas Turbine Combustion Chamber,”ASME Journal of Engineering for Power, Vol. 101, pp.327-336, 1979.
    [30] Kim S.-E., Choudhury D., “A Near-Wall Treatment Using Wall Functions Sensitized to Pressure Gradient,” Separated and Complex Flow, ASME FED Vol. 217, 1995.
    [31] Brackbill J. U., Kothe D. B., and Zemach C., “ A Continuum Method for Modeling Surface Tension,” Journal of Computational Physics, Vol. 100, pp. 335-354, 1992.
    [32] Patankar S.V., Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York, 1980.
    [33] Muzaferija S., Peric, M., Sames P. and Schellin T., “A Two-Fluid Navier-Stokes Solver to Simulate Water Entry”, Twenty-Second Symp. On Naval Hydrodynamics, Washington, D.C., pp.638-649, 1998.
    [34] Patankar, S. V., and Spalding, D. B., “A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-dimensional Parabolic Flows”, Int. J. Heat and Mass Transfer, Vol. 15, pp. 1787-1806, 1972
    [35] Bagley J.D., “The Behavior of Adaptive System which Employ Genetic and Correlation Algorithm,” Dissertation Abstracts International, Vol. 28, 1967.
    [36] De Jong K.A., “An Analysis of the Behavior of a Class of Genetic Adaptive Systems,” PhD Dissertation, University of Michigan, No. 76~9381, 1975.
    [37] Goldberg D.E., Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, 1989.
    [38] Davis L.D., Handbook of Genetic Algorithms, Van Nostrand Reinhold, 1991.
    [39] Koza J.R., Genetic Programming, on the Programming of Computers by Means of Natural Selection, MIT Press, 1992.
    [40] 葉怡成, 高等實驗計算法(Advanced Design of Experiments), 五南圖書公司, 2009.
    [41] 周明, 孫樹棟, 遺傳算法原理及應用(Genetic Algorithms: theory and applications), 國防工業出版社, 1999.

    下載圖示 校內:2015-06-05公開
    校外:2017-06-05公開
    QR CODE