| 研究生: |
蔡昀庭 Tsai, Yun-Ting |
|---|---|
| 論文名稱: |
河道形狀及水砂比影響水下辮狀河道演化: 物理實驗與數值模擬 Submarine braided channels in response to channel confinement shapes and inflow-to-sediment discharge ratios: physical experiments and numerical models |
| 指導教授: |
賴悅仁
Lai, Yueh-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 124 |
| 中文關鍵詞: | 水下辮狀河道 、異重流 、河道形狀 、活躍辮狀指數 、RCM 、iRIC |
| 外文關鍵詞: | submarine braided channels, turbidity current, confinement shape, active braiding intensity, iRIC |
| 相關次數: | 點閱:51 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由濁流驅動之海底辮狀河道常出現於深海沖積扇上,其形貌特徵與陸上之辮狀河道相似。過去的研究發現水下辮狀河道之活躍辮狀指數與筆直渠道之寬度、無因次水流功率及無因次泥沙水流功率成正比。然而,在自然界中的海底渠道大多並非等寬且筆直,而是會逐漸變寬或變窄。因此,本研究藉由飽和鹽水與砂混合模擬海底濁流進行小尺度之物理實驗,探討不同河道形狀及水砂比對水下辮狀渠道形貌演變的影響,實驗中採用的河道形狀包含菱形、沙漏型及倒梯形。根據實驗結果顯示,活躍辮狀指數和漸進變化的河道寬度呈正比關係。當河道寬度漸寬,會發展出越複雜的水下辮狀河道形貌;反之,當河道寬度漸窄,則會抑制水下河道的辮狀發展。同時,活躍辮狀指數也與無因次水流功率及無因次泥砂水流功率成正相關。在相同寬度下,水砂比增加則會使活躍辮狀指數略微減少。此外,活躍寬度與體積變化量會成正比。這些趨勢都與陸上辮狀河道的研究結果相符。而沙洲的幾何形狀則不受水砂比及河道形狀之影響。除了物理實驗,本研究也使用兩種數值模型代入實驗地形與率定之流量進行模擬。Reduced-complexity model (RCM)定床模擬水流效果良好,而iRIC之Nays2DH模組雖然可以模擬動床,但是將其應用到水下河道之動床模擬則效果不佳。
Submarine braided channels, driven by turbidity currents, have been revealed on several deep-sea fans, displaying similar morphological features to fluvial braided rivers. Past experimental studies on submarine braided channels have shown that active braiding intensity (BI_A) is proportional to fixed confinement width, dimensionless stream power (ω^*) and dimensionless sediment-stream power (ω^(**)).
However, the field-scale submarine braided channels may not restrict to a fixed confinement width. In this study, we use physical experiments to investigate the influence of confinement shapes and inflow-to-sediment discharge ratios (Q_in⁄Q_s ) on the evolution of submarine braided channels. The experimental results show that the BI_A is strongly proportional to the varying confinement width. The measured BI_A is proportional to both the ω^* and ω^(**).Additionally, increasing Q_in⁄Q_s causes a slightly decrease of BI_A. The measured active width (W_a) is proportional to the bulk change (V_bulk). These relations all agree with the published trends of both fluvial and submarine braided channels. For the geometric properties of sandbars, the measured sandbar aspect ratio and sandbar compactness ratio remain constant regardless the change of confinement shape or Q_in⁄Q_s .
In addition to physical experiments, this study employed two numerical models to simulate the experimental terrain and calibrated flow rates. The Reduced-Complexity Model (RCM) performed well in simulating the fixed bed flow, while the Nays2DH in iRIC, although capable of simulating mobile beds, did not perform well when applied to the simulation of mobile beds in submarine channels.
Ashmore, P. E. (1991). How do gravel-bed rivers braid? Canadian journal of earth sciences, 28(3), 326-341.
Bertoldi, W., Zanoni, L., & Tubino, M. (2009). Planform dynamics of braided streams. Earth Surface Processes and Landforms, 34(4), 547-557.
Coulthard, T. J., Neal, J. C., Bates, P. D., Ramirez, J., de Almeida, G. A., & Hancock, G. R. (2013). Integrating the LISFLOOD‐FP 2D hydrodynamic model with the CAESAR model: implications for modelling landscape evolution. Earth Surface Processes and Landforms, 38(15), 1897-1906.
Deptuck, M. E., Sylvester, Z., Pirmez, C., & O’Byrne, C. (2007). Migration–aggradation history and 3-D seismic geomorphology of submarine channels in the Pleistocene Benin-major Canyon, western Niger Delta slope. Marine and Petroleum Geology, 24(6-9), 406-433.
Egozi, R., & Ashmore, P. (2008). Defining and measuring braiding intensity. Earth Surface Processes and Landforms, 33(14), 2121-2138.
Egozi, R., & Ashmore, P. (2009). Experimental analysis of braided channel pattern response to increased discharge. Journal of Geophysical Research: Earth Surface, 114(F2).
Foreman, B. Z., Lai, S. Y., Komatsu, Y., & Paola, C. (2015). Braiding of submarine channels controlled by aspect ratio similar to rivers. Nature Geoscience, 8(9), 700-703.
Hein, F. J., & Walker, R. G. (1991). The Cambro‐Ordovician Cap EnragéFormation, Québec, Canada: Conglomeratic Deposits of a Braided Submarine Channel with Terraces. Deep‐Water Turbidite Systems, 231-251.
Huang, A. Y., Huang, M. Y., Capart, H., & Chen, R.-H. (2008). Optical measurements of pore geometry and fluid velocity in a bed of irregularly packed spheres. Experiments in Fluids, 45, 309-321.
Huang, S. Y., Lai, S. Y., Limaye, A. B., Foreman, B. Z., & Paola, C. (2023). Confinement width and inflow-to-sediment discharge ratio control the morphology and braiding intensity of submarine channels: insights from physical experiments and reduced-complexity models. Earth Surface Dynamics, 11(4), 615-632.
Iwasaki, T., Shimizu, Y., & Kimura, I. (2016). Numerical simulation of bar and bank erosion in a vegetated floodplain: A case study in the Otofuke River. Advances in Water Resources, 93, 118-134.
Khripounoff, A., Vangriesheim, A., Babonneau, N., Crassous, P., Dennielou, B., & Savoye, B. (2003). Direct observation of intense turbidity current activity in the Zaire submarine valley at 4000 m water depth. Marine Geology, 194(3-4), 151-158.
Krastel, S., Hanebuth, T. J., Antobreh, A., Henrich, R., Holz, C., Kölling, M., . . . Wynn, R. (2004). CapTimiris Canyon: A newly discovered channel system offshore of Mauritania. EOS, Transactions American Geophysical Union, 85(42), 417-423.
Lai, S. Y., Hung, S. S., Foreman, B. Z., Limaye, A. B., Grimaud, J. L., & Paola, C. (2017). Stream power controls the braiding intensity of submarine channels similarly to rivers. Geophysical Research Letters, 44(10), 5062-5070.
Lemay, M., Grimaud, J.-L., Cojan, I., Rivoirard, J., & Ors, F. (2020). Geomorphic variability of submarine channelized systems along continental margins: Comparison with fluvial meandering channels. Marine and Petroleum Geology, 115, 104295.
Limaye, A. B., Grimaud, J. L., Lai, S. Y., Foreman, B. Z., Komatsu, Y., & Paola, C. (2018). Geometry and dynamics of braided channels and bars under experimental density currents. Sedimentology, 65(6), 1947-1972.
Mayall, M., Jones, E., & Casey, M. (2006). Turbidite channel reservoirs—Key elements in facies prediction and effective development. Marine and Petroleum Geology, 23(8), 821-841.
Nelson, J. M., Shimizu, Y., Abe, T., Asahi, K., Gamou, M., Inoue, T., . . . Kimura, I. (2016). The international river interface cooperative: Public domain flow and morphodynamics software for education and applications. Advances in Water Resources, 93, 62-74.
Paola, C. (2001). Modelling stream braiding over a range of scales.
Parker, G. (1976). On the cause and characteristic scales of meandering and braiding in rivers. Journal of fluid mechanics, 76(3), 457-480.
Peakall, J., Amos, K. J., Keevil, G. M., Bradbury, P. W., & Gupta, S. (2007). Flow processes and sedimentation in submarine channel bends. Marine and Petroleum Geology, 24(6-9), 470-486.
Peirce, S., Ashmore, P., & Leduc, P. (2018). The variability in the morphological active width: Results from physical models of gravel‐bed braided rivers. Earth Surface Processes and Landforms, 43(11), 2371-2383.
Romagnoli, C., Casalbore, D., & Chiocci, F. L. (2012). La Fossa Caldera breaching and submarine erosion (Vulcano island, Italy). Marine Geology, 303, 87-98.
Tsorng, S., Capart, H., Lai, J., & Young, D. (2006). Three-dimensional tracking of the long time trajectories of suspended particles in a lid-driven cavity flow. Experiments in Fluids, 40, 314-328.
Williams, R., Measures, R., Hicks, D., & Brasington, J. (2016). Assessment of a numerical model to reproduce event‐scale erosion and deposition distributions in a braided river. Water resources research, 52(8), 6621-6642.
Wynn, R. B., Cronin, B. T., & Peakall, J. (2007). Sinuous deep-water channels: Genesis, geometry and architecture. Marine and Petroleum Geology, 24(6-9), 341-387.
洪世哲,2015,「以實驗方法探究海下受異重流影響之辮狀河道」,成功大學水利及海洋工程研究所碩士論文,1-90。
唐高晴,2018,,「河寬及水流功率影響海底辮狀河道之實驗研究」,成功大學水利及海洋工程研究所碩士論文,1-100。
張棠羽,2019,「以實驗方法探究向下丁壩對河道形貌之影響」,成功大學水利及海洋工程研究所碩士論文,1-113。
黃彥鈞,2020,「寬度及水砂比影響水下辮狀河道演化之研究: 實驗與水流模式開發」,成功大學水利及海洋工程研究所碩士論文,1-121
劉欣昀,2022,「不同水文歷線影響水下辮狀河道演化之研究: 實驗及數值模擬」,成功大學水利及海洋工程研究所碩士論文,1-133
校內:2027-08-31公開