簡易檢索 / 詳目顯示

研究生: 簡宏澤
Chien, Hung-Tse
論文名稱: 利用分子模擬探討混合離子對雙親分子對雙層膜的熱相行為的影響
Effects of Ion Pair Amphiphile Mixture on The Bilayer's Thermotropic Phase Behavior: Molecular Dynamics Simulation Study
指導教授: 許梅娟
Syu, Mei-Jywan
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 111
中文關鍵詞: 分子動力學離子對雙親分子相變溫度不對稱結構混合物
外文關鍵詞: molecular dynamics simulation, ion pair amphiphiles, phase transition temperature, asymmetric structural mixtures
相關次數: 點閱:103下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 I ABSTRACT II Table of Contents V List of Tables VII List of Figures VIII List of Symbols XV CHAPTER 1 INTRODUCTION 1 1.1 Liposomes as drug Carriers 1 1.2 Hyperthermia Treatment 4 1.3 Thermo-Sensitive Liposomes 6 1.4 Ion Pair Amphiphiles 8 1.5 Motivation 11 CHAPTER 2 LITERATURE REVIEW 12 2.1 Bilayer Thermotropic Phase Behavior 12 2.1.1. Thermo-Responsive Liposomes & Catanionic Vesicle 16 2.2 Experimental Technique to Identify Bilayer Phases 18 2.2.1. Differential Scanning Calorimetric (DSC) 18 2.2.2. Dynamic Light Scattering (DLS) 21 2.2.3. Fourier-Transform Infrared Spectroscopy (FTIR) 24 2.3 Common Strategies for Tm Modulation 27 2.3.1. Mixing of Lipids with Different Total Carbon Numbers 27 2.3.2. Mixtures with asymmetric carbon chains 30 2.4 Theoretical Model for Thermotropic Phase Behavior of Bilayer 33 2.5 Molecular Simulation of the Bilayer System 37 2.5.1. MD on Lipid Phase Study 37 2.5.2. MD Simulation of IPA Bilayer 39 CHAPTER 3 METHODOLOGY 43 3.1 Research Framework 43 3.2 IPA System 45 3.3 Molecular Dynamics Simulation Details 48 3.4 Advanced Sampling of Phase Transition Temperature 49 3.5 Bilayer Structural & Mechanical Properties 53 3.5.1. Lateral Molecular Area 53 3.5.2. Gauche Fraction, XGau 53 3.5.3. Alkyl Chain Tilt Angle distribution, P(mathbit{ heta}) 54 3.5.4. Packing Density 55 3.5.5. Molecular Tilt Modulus, mathbit{chi} 56 3.5.6. Area expansion modulus, KA 57 3.6 Theoretical Model for Liquid-Gel Phase Transition 57 3.6.1. Flexible Strings Model 57 3.6.2. Liquid-Gel Phase Transition in Lipid Bilayers 63 CHAPTER 4 RESULTS AND DISCUSSION 64 4.1 Tm with four mixtures 64 4.1.1. DSC Thermogram 64 4.1.2. Mixing Behavior 68 4.1.3. The Impact of the Variables Denoted as <N> and <∆N> 70 4.2 IPA Mixture Structural & Mechanical Properties 72 4.2.1. Structural Properties on Ld phase 72 4.2.2. Mechanical Properties on Ld phase 75 4.2.3. Phase and Phase Transition Temperature 77 4.2.4. Structural Properties on Gel Phase 79 4.2.5. Mechanical Properties on Gel Phase 82 4.2.6. Packing Density and Phase Transition Temperature 84 4.3 Theoretical Model 87 4.3.1. The Selection and Definition of Parameters 87 4.3.2. Calculate the Tm of the One-component IPA Bilayer 89 4.3.3. Calculate the Tm of the IPA Mixture Bilayer 94 CHAPTER 5 CONCLUSION 101 References 104

    1. Ta, T. and T.M. Porter, Thermosensitive liposomes for localized delivery and triggered release of chemotherapy. Journal of Controlled Release, 2013. 169(1-2): p. 112-125.
    2. Allen, T.M. and P.R. Cullis, Liposomal drug delivery systems: From concept to clinical applications. Advanced Drug Delivery Reviews, 2013. 65(1): p. 36-48.
    3. Ponce, A.M., et al., Hyperthermia mediated liposomal drug delivery. International Journal of Hyperthermia, 2006. 22(3): p. 205-213.
    4. Allen, T.M., et al., Stealth liposomes: an improved sustained release system for 1-beta-D-arabinofuranosylcytosine. Cancer research, 1992. 52(9): p. 2431-9.
    5. Gabizon, A., et al., Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer research, 1994. 54(4): p. 987-92.
    6. Allen, T.M. and L.G. Cleland, Serum-induced leakage of liposome contents. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1980. 597(2): p. 418-426.
    7. Nagle, J.F., Theory of lipid monolayer and bilayer phase transitions: Effect of headgroup interactions. The Journal of Membrane Biology, 1976. 27(1): p. 233-250.
    8. Yatvin, M.B., et al., Design of Liposomes for Enhanced Local Release of Drugs by Hyperthermia. Science, 1978. 202(4374): p. 1290-1293.
    9. Mazzotta, E., L. Tavano, and R. Muzzalupo, Thermo-sensitive vesicles in controlled drug delivery for chemotherapy. Pharmaceutics, 2018. 10(3): p. 150.
    10. Pradhan, P., et al., Targeted temperature sensitive magnetic liposomes for thermo-chemotherapy. Journal of Controlled Release, 2010. 142(1): p. 108-121.
    11. Smet, M.d., et al., SPECT/CT imaging of temperature-sensitive liposomes for MR-image guided drug delivery with high intensity focused ultrasound. Journal of Controlled Release, 2013. 169(1-2): p. 82-90.
    12. Hossann, M., et al., In vitro stability and content release properties of phosphatidylglyceroglycerol containing thermosensitive liposomes. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2007. 1768(10): p. 2491-2499.
    13. Hosokawa, T., et al., Alteration in the Temperature-Dependent Content Release Property of Thermosensitive Liposomes in Plasma. Chemical and Pharmaceutical Bulletin, 2003. 51(11): p. 1227-1232.
    14. Limmer, S., et al., Gemcitabine Treatment of Rat Soft Tissue Sarcoma with Phosphatidyldiglycerol-Based Thermosensitive Liposomes. Pharmaceutical Research, 2014. 31(9): p. 2276-2286.
    15. Li, L., et al., A novel two-step mild hyperthermia for advanced liposomal chemotherapy. Journal of Controlled Release, 2014. 174: p. 202-208.
    16. Lindner, L.H., et al., Dual role of hexadecylphosphocholine (miltefosine) in thermosensitive liposomes: Active ingredient and mediator of drug release. Journal of Controlled Release, 2008. 125(2): p. 112-120.
    17. Wu, Y., et al., Epirubicin-encapsulated long-circulating thermosensitive liposome improves pharmacokinetics and antitumor therapeutic efficacy in animals. Journal of Liposome Research, 2011. 21(3): p. 221-228.
    18. Wang, Z.-Y., et al., Preparation, characterization, and efficacy of thermosensitive liposomes containing paclitaxel. Drug Delivery, 2016. 23(4): p. 1222-1231.
    19. Zhang, H., et al., Preparation, Characterization, and Pharmacodynamics of Thermosensitive Liposomes Containing Docetaxel. Journal of Pharmaceutical Sciences, 2014. 103(7): p. 2177-2183.
    20. Sabbagh, C.A., et al., Formulation and Pharmacokinetics of Thermosensitive Stealth® Liposomes Encapsulating 5-Fluorouracil. Pharmaceutical Research, 2015. 32(5): p. 1585-1603.
    21. Kaler, E.W., et al., Spontaneous Vesicle Formation in Aqueous Mixtures of Single-Tailed Surfactants. Science, 1989. 245(4924): p. 1371-1374.
    22. Balazs, D.A. and W.T. Godbey, Liposomes for Use in Gene Delivery. Journal of Drug Delivery, 2011. 2011: p. 326497.
    23. Kheyfets, B., T. Galimzyanov, and S. Mukhin, Microscopic Description of Thermodynamics of Lipid Membrane at Liquid-Gel Phase Transition. arXiv, 2018.
    24. Singh, R. and J.W. Lillard, Nanoparticle-based targeted drug delivery. Experimental and Molecular Pathology, 2009. 86(3): p. 215-223.
    25. Venable, R.M., A. Krämer, and R.W. Pastor, Molecular Dynamics Simulations of Membrane Permeability. Chemical Reviews, 2019. 119(9): p. 5954-5997.
    26. Derycke, A.S.L. and P.A.M.d. Witte, Liposomes for photodynamic therapy. Advanced Drug Delivery Reviews, 2004. 56(1): p. 17-30.
    27. Koynova, R. and M. Caffrey, Phases and phase transitions of the phosphatidylcholines. Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes, 1998. 1376(1): p. 91-145.
    28. Slater, J.L. and C.-H. Huang, Interdigitated bilayer membranes. Progress in Lipid Research, 1988. 27(4): p. 325-359.
    29. Pabst, G., et al., On the Propensity of Phosphatidylglycerols to Form Interdigitated Phases. Biophysical Journal, 2007. 93(2): p. 513-525.
    30. Cevc, G., How membrane chain-melting phase-transition temperature is affected by the lipid chain asymmetry and degree of unsaturation: an effective chain-length model. Biochemistry, 1991. 30(29): p. 7186-7193.
    31. Blicher, A., et al., The Temperature Dependence of Lipid Membrane Permeability, its Quantized Nature, and the Influence of Anesthetics. Biophysical Journal, 2009. 96(11): p. 4581-4591.
    32. Kranenburg, M. and B. Smit, Phase Behavior of Model Lipid Bilayers †. The Journal of Physical Chemistry B, 2005. 109(14): p. 6553-6563.
    33. Lee, W.-H., et al., Synthesis of Ion-Pair Amphiphiles and Calorimetric Study on the Gel to Liquid-Crystalline Phase Transition Behavior of Their Bilayers. Journal of Chemical & Engineering Data, 2015. 60(4): p. 1119-1125.
    34. Liu, Y.-S., C.-F. Wen, and Y.-M. Yang, Development of ethosome-like catanionic vesicles for dermal drug delivery. Journal of the Taiwan Institute of Chemical Engineers, 2012. 43(6): p. 830-838.
    35. Tomašić, V., I. Štefanić, and N. Filipović-Vinceković, Adsorption, association and precipitation in hexadecyltrimethylammonium bromide/sodium dodecyl sulfate mixtures. Colloid and Polymer Science, 1999. 277(2-3): p. 153-163.
    36. Filipović-Vinceković, N., et al., Phase Transitions from Catanionic Salt to Mixed Cationic/Anionic Vesicles. Journal of Colloid and Interface Science, 1998. 201(1): p. 59-70.
    37. Bujan, M., N. Vdović, and N. Filipović-Vinceković, Phase transitions in cationic and anionic surfactant mixtures. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996. 118(1-2): p. 121-126.
    38. Kuo, A.-T., et al., Enhanced physical stability of positively charged catanionic vesicles: Role of cholesterol-adjusted molecular packing. Journal of the Taiwan Institute of Chemical Engineers, 2018. 92: p. 29-35.
    39. Kuo, A.-T., et al., Enhanced Physical Stability of Mixed Ion Pair Amphiphile/Double-chained Cationic Surfactant Vesicles in the Presence of Cholesterol. Journal of Oleo Science, 2018. 67(6): p. ess18008.
    40. Biltonen, R.L. and D. Lichtenberg, The use of differential scanning calorimetry as a tool to characterize liposome preparations. Chemistry and Physics of Lipids, 1993. 64(1-3): p. 129-142.
    41. Mabrey, S. and J.M. Sturtevant, Methods in Membrane Biology, Volume 9. 1978: p. 237-274.
    42. Biltonen, R.L., E. Freire, and J.F. Brandts, Thermodynamic Characterization of Conformational States of Biological Macromolecules using Differential Scanning Calorimetry. CRC Critical Reviews in Biochemistry, 1978. 5(2): p. 85-124.
    43. Chang, W.-H., et al., Effects of Sterol-Like Additives on Phase Transition Behavior of Ion-Pair Amphiphile Bilayers. Journal of Oleo Science, 2017. 66(11): p. ess17086.
    44. Hiemenz, P.C. and R. Rajagopalan, Principles of Colloid and Surface Chemistry. 1997: p. 145-192.
    45. Michel, N., et al., Determination of phase transition temperatures of lipids by light scattering. Chemistry and Physics of Lipids, 2006. 139(1): p. 11-19.
    46. Shioi, A. and T.A. Hatton, Model for Formation and Growth of Vesicles in Mixed Anionic/Cationic (SOS/CTAB) Surfactant Systems. Langmuir, 2002. 18(20): p. 7341-7348.
    47. Viseu, M.I., et al., Spontaneous Vesicles Formed in Aqueous Mixtures of Two Cationic Amphiphiles. Langmuir, 2000. 16(5): p. 2105-2114.
    48. Qu, W., et al., Vesicle Formation with an Anionic Surfactant and a Conventional Cationic Surfactant in Mixed Systems. Journal of Dispersion Science and Technology, 2013. 34(2): p. 240-243.
    49. Havlíková, M., et al., Cholesterol Effect on Membrane Properties of Cationic Ion Pair Amphiphile Vesicles at Different Temperatures. Langmuir, 2021. 37(7): p. 2436-2444.
    50. Lewis, R.N.A.H. and R.N. McElhaney, Membrane lipid phase transitions and phase organization studied by Fourier transform infrared spectroscopy. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2013. 1828(10): p. 2347-2358.
    51. Ahmed, M.K., C.T. Choma, and P.T.T. Wong, High pressure FTIR study of interaction of melittin with dimyristoylphosphatidyl glycerol bilayers. Chemistry and Physics of Lipids, 1992. 63(1-2): p. 139-148.
    52. Schmid, M., et al., A combined FTIR and DSC study on the bilayer-stabilising effect of electrostatic interactions in ion paired lipids. Colloids and Surfaces B: Biointerfaces, 2018. 169: p. 298-304.
    53. Phillips, M.C., B.D. Ladbrooke, and D. Chapman, Molecular interactions in mixed lecithin systems. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1970. 196(1): p. 35-44.
    54. Mabrey, S. and J.M. Sturtevant, Investigation of phase transitions of lipids and lipid mixtures by sensitivity differential scanning calorimetry. Proceedings of the National Academy of Sciences, 1976. 73(11): p. 3862-3866.
    55. Nagle, J.F., Theory of biomembrane phase transitions. The Journal of Chemical Physics, 1973. 58(1): p. 252-264.
    56. Nagle, J.F., Chain model theory of lipid monolayer transitions. The Journal of Chemical Physics, 1975. 63(3): p. 1255-1261.
    57. Mason, J.T., Mixing behavior of symmetric chain length and mixed chain length phosphatidylcholines in two-component multilamellar bilayers: evidence for gel and liquid-crystalline phase immiscibility. Biochemistry, 1988. 27(12): p. 4421-4429.
    58. Schram, V., H.N. Lin, and T.E. Thompson, Topology of gel-phase domains and lipid mixing properties in phase-separated two-component phosphatidylcholine bilayers. Biophysical Journal, 1996. 71(4): p. 1811-1822.
    59. Marčelja, S., Chain ordering in liquid crystals II. Structure of bilayer membranes. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1974. 367(2): p. 165-176.
    60. Hui, S.W., et al., Electron diffraction study of hydrated phospholipid single bilayers. Effects of temperature, hydration and surface pressure of the “precursor” monolayer. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1975. 382(3): p. 265-275.
    61. Oldani, D., et al., Monolayer characteristic of some glycolipids at the air-water interface. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1975. 382(1): p. 1-9.
    62. Simon, S.A., et al., A calorimetric and monolayer investigation of the influence of ions on the thermodynamic properties of phosphatidylcholine. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1975. 375(3): p. 317-326.
    63. Mukhin, S.I. and S. Baoukina, Analytical derivation of thermodynamic characteristics of lipid bilayer from a flexible string model. Physical Review E, 2005. 71(6): p. 061918.
    64. Kheyfets, B.B. and S.I. Mukhin, Simple model of local ordering of DPPC lipids in contact with cholesterol. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2015. 9(2): p. 77-83.
    65. Kheyfets, B., et al., Analytical calculation of the lipid bilayer bending modulus. Physical Review E, 2016. 94(4): p. 042415.
    66. Kheyfets, B., S. Mukhin, and T. Galimzyanov, Origin of lipid tilt in flat monolayers and bilayers. Physical Review E, 2019. 100(6): p. 062405.
    67. Kheyfets, B., T. Galimzyanov, and S. Mukhin, Lipid lateral self-diffusion drop at liquid-gel phase transition. Physical Review E, 2019. 99(1): p. 012414.
    68. Ploeg, P.v.d. and H.J.C. Berendsen, Molecular dynamics simulation of a bilayer membrane. The Journal of Chemical Physics, 1982. 76(6): p. 3271-3276.
    69. Tieleman, D.P. and H.J.C. Berendsen, Molecular dynamics simulations of a fully hydrated dipalmitoylphosphatidylcholine bilayer with different macroscopic boundary conditions and parameters. The Journal of Chemical Physics, 1996. 105(11): p. 4871-4880.
    70. Tieleman, D.P., S.J. Marrink, and H.J.C. Berendsen, A computer perspective of membranes: molecular dynamics studies of lipid bilayer systems. Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes, 1997. 1331(3): p. 235-270.
    71. Tjörnhammar, R. and O. Edholm, Reparameterized United Atom Model for Molecular Dynamics Simulations of Gel and Fluid Phosphatidylcholine Bilayers. Journal of Chemical Theory and Computation, 2014. 10(12): p. 5706-5715.
    72. Lee, S., et al., CHARMM36 United Atom Chain Model for Lipids and Surfactants. The Journal of Physical Chemistry B, 2014. 118(2): p. 547-556.
    73. Kowalik, B., et al., Combination of MD Simulations with Two-State Kinetic Rate Modeling Elucidates the Chain Melting Transition of Phospholipid Bilayers for Different Hydration Levels. The Journal of Physical Chemistry B, 2015. 119(44): p. 14157-14167.
    74. Sun, L. and R.A. Böckmann, Membrane phase transition during heating and cooling: molecular insight into reversible melting. European Biophysics Journal, 2018. 47(2): p. 151-164.
    75. Ohvo-Rekilä, H., et al., Cholesterol interactions with phospholipids in membranes. Progress in Lipid Research, 2002. 41(1): p. 66-97.
    76. McMullen, T.P.W., R.N.A.H. Lewis, and R.N. McElhaney, Calorimetric and spectroscopic studies of the effects of cholesterol on the thermotropic phase behavior and organization of a homologous series of linear saturated phosphatidylglycerol bilayer membranes. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2009. 1788(2): p. 345-357.
    77. Róg, T. and M. Pasenkiewicz-Gierula, Cholesterol Effects on the Phosphatidylcholine Bilayer Nonpolar Region: A Molecular Simulation Study. Biophysical Journal, 2001. 81(4): p. 2190-2202.
    78. Ogata, K., W. Uchida, and S. Nakamura, Understanding Thermal Phases in Atomic Detail by All-Atom Molecular-Dynamics Simulation of a Phospholipid Bilayer. The Journal of Physical Chemistry B, 2014. 118(49): p. 14353-14365.
    79. Tian, C.-a. and C.-c. Chiu, Importance of Hydrophilic Groups on Modulating the Structural, Mechanical, and Interfacial Properties of Bilayers: A Comparative Molecular Dynamics Study of Phosphatidylcholine and Ion Pair Amphiphile Membranes. International Journal of Molecular Sciences, 2018. 19(6): p. 1552.
    80. Chen, C.-h., C.-a. Tian, and C.-c. Chiu, The Effects of Alkyl Chain Combinations on the Structural and Mechanical Properties of Biomimetic Ion Pair Amphiphile Bilayers. Bioengineering, 2017. 4(4): p. 84.
    81. Huang, F.-y. and C.-c. Chiu, Interplay between alkyl chain asymmetry and cholesterol addition in the rigid ion pair amphiphile bilayer systems. The Journal of Chemical Physics, 2017. 146(3): p. 035102.
    82. Berendsen, H.J.C., D.v.d. Spoel, and R.v. Drunen, GROMACS: A message-passing parallel molecular dynamics implementation. Computer Physics Communications, 1995. 91(1-3): p. 43-56.
    83. Hess, B., et al., GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. Journal of Chemical Theory and Computation, 2008. 4(3): p. 435-447.
    84. Lindahl, E., B. Hess, and D.v.d. Spoel, GROMACS 3.0: a package for molecular simulation and trajectory analysis. Molecular modeling annual, 2001. 7(8): p. 306-317.
    85. Pronk, S., et al., GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics, 2013. 29(7): p. 845-854.
    86. Solving Software Challenges for Exascale, International Conference on Exascale Applications and Software, EASC 2014, Stockholm, Sweden, April 2-3, 2014, Revised Selected Papers. Lecture Notes in Computer Science, 2015.
    87. Po, Y., Coupling and Decoupling between The Fluorescence Probe Dynamics and The Phase Behaviors of Ion Pair Amphiphile Bilayers: A Molecular Dynamics Simulation Study. National Cheng Kung University, 2021.
    88. Martínez, L., et al., PACKMOL: A package for building initial configurations for molecular dynamics simulations. Journal of Computational Chemistry, 2009. 30(13): p. 2157-2164.
    89. Darden, T., D. York, and L. Pedersen, Particle mesh Ewald: An N ⋅log( N ) method for Ewald sums in large systems. The Journal of Chemical Physics, 1993. 98(12): p. 10089-10092.
    90. Essmann, U., et al., A smooth particle mesh Ewald method. The Journal of Chemical Physics, 1995. 103(19): p. 8577-8593.
    91. Hess, B., et al., LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 1997. 18(12): p. 1463-1472.
    92. Parrinello, M. and A. Rahman, Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 1981. 52(12): p. 7182-7190.
    93. Nosé, S., A molecular dynamics method for simulations in the canonical ensemble. Molecular Physics, 1984. 52(2): p. 255-268.
    94. Nosé, S., A unified formulation of the constant temperature molecular dynamics methods. The Journal of Chemical Physics, 1984. 81(1): p. 511-519.
    95. Hoover, W.G., Canonical dynamics: Equilibrium phase-space distributions. Physical Review A, 1985. 31(3): p. 1695-1697.
    96. Sugita, Y. and Y. Okamoto, Replica-exchange molecular dynamics method for protein folding. Chemical Physics Letters, 1999. 314(1-2): p. 141-151.
    97. Earl, D.J. and M.W. Deem, Parallel tempering: Theory, applications, and new perspectives. Physical Chemistry Chemical Physics, 2005. 7(23): p. 3910-3916.
    98. Unconstrained Structure Formation in Coarse-Grained Protein Simulations.
    99. Lee, C.-H., Y.-M. Yang, and C.-H. Chang, Enhancing physical stability of positively charged catanionic vesicles in the presence of calcium chloride via cholesterol-induced fluidic bilayer characteristic. Colloid and Polymer Science, 2014. 292(10): p. 2519-2527.
    100. Khelashvili, G., G. Pabst, and D. Harries, Cholesterol Orientation and Tilt Modulus in DMPC Bilayers. The Journal of Physical Chemistry B, 2010. 114(22): p. 7524-7534.
    101. Kučerka, N., et al., Lipid Bilayer Structure Determined by the Simultaneous Analysis of Neutron and X-Ray Scattering Data. Biophysical Journal, 2008. 95(5): p. 2356-2367.
    102. Feller, S.E. and R.W. Pastor, Constant surface tension simulations of lipid bilayers: The sensitivity of surface areas and compressibilities. The Journal of Chemical Physics, 1999. 111(3): p. 1281-1287.
    103. Shinoda, W., et al., Molecular Dynamics Study of Bipolar Tetraether Lipid Membranes. Biophysical Journal, 2005. 89(5): p. 3195-3202.
    104. Vermeer, L.S., et al., Acyl chain order parameter profiles in phospholipid bilayers: computation from molecular dynamics simulations and comparison with 2H NMR experiments. European Biophysics Journal, 2007. 36(8): p. 919-931.
    105. Mukhin, S.I. and B.B. Kheyfets, Analytical derivation of thermodynamic properties of bolalipid membrane. arXiv, 2009.
    106. Salem, L., Attractive Forces between Long Saturated Chains at Short Distances. The Journal of Chemical Physics, 1962. 37(9): p. 2100-2113.

    無法下載圖示 校內:2028-07-31公開
    校外:2028-07-31公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE