| 研究生: |
盧傳曜 Lu, Chuan-Yao |
|---|---|
| 論文名稱: |
電紡聚對苯二甲酸丁二酯/同排聚丙烯奈米纖維結晶性質 Crystallization of electrospun polybutylene terephthalate/isotactic polypropylene nanofibers |
| 指導教授: |
王紀
Wang, Chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | 電紡絲 、同排聚丙烯 、聚對苯二甲酸丁二酯 、成核劑 |
| 外文關鍵詞: | electrospinning, iPP, PBT, nucleating agent |
| 相關次數: | 點閱:45 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以共同電紡絲之方式,製備聚對苯二甲酸丁二酯/同排聚丙烯(PBT/iPP)複合纖維膜。藉由同時電紡10 wt% PBT/TFA溶液以及8 wt% iPP/o-DCB/0.5 wt% Bu4NClO4溶液,並將兩溶液之流量皆控制為1 mL/h,根據密度換算,可得複合纖維膜中iPP理論含量為40.89%。由於iPP不溶於PBT之溶劑三氟乙酸,藉由三氟乙酸處理複合纖維膜,可得實際iPP含量為41 wt%。
吾人以SEM、DSC及X光散射等儀器研究複合纖維膜之表面結構以及其結晶性質。電紡iPP纖維及PBT纖維具有不同之表面結構。當PBT纖維及iPP纖維以59:41之比例混合,形成複合纖維膜時,PBT可有效提升iPP之結晶溫度,約14.5 oC。複合纖維膜中之iPP,其結晶速率較普通之iPP纖維快,且成核機制亦有所不同。有趣的是,當PBT纖維形態消失,其對於iPP之成核能力亦跟著消失,可見其纖維形態之重要性,而非PBT晶體的存在使iPP成核能力上升。
根據X光散射之實驗結果,無論PBT為何種型態,其皆使iPP形成型晶體。另外,PBT纖維誘導iPP結晶形成之lamellae排列不規則,使其SAXS 1D profile中沒有一明顯的峰代表iPP之長週期。而當PBT纖維形態消失,iPP之lamellae則可規則派列使SAXS 1D profile中之繞射峰出現,但由於此繞射峰包刮iPP及PBT晶體之繞射峰,因此無法藉此判斷此樣品中各自的長週期。
In this study, PBT/iPP nanofibers were successfully produced through electrospinning PBT solution and iPP solution simultaneously. We used a rotating metal rod with the tangent speed equaling to 264 mm/s to collect and mix the fibers. With the controlled flow rate and the solution density, the composition was calculated to be 40.89 wt% iPP and 59.11 wt% PBT. Also, we used TFA to dissolve PBT in the product, and we could get the real composition of iPP. The real composition of iPP is 41 wt%.
We used SEM, DSC, WAXD and the SAXS techniques to investigate the surface structures and the crystallization properties. With the existence of PBT fibers, the crystallization temperature of iPP increased about 14.5 oC during dynamic crystallization process. PBT fibers not only made iPP crystal grow faster, but also changed the mechanism of crystallization of iPP. Furthermore, when the fiber structure of PBT disappeared, the ability to enhance the crystallization temperature of iPP also disappeared. According to this result, we got the conclusion that the fiber structure of PBT is important for the nucleating ability.
Through WAXD and SAXS techniques, we concluded that PBT only made iPP form the phase, regardless of the structure of PBT. On the other hand, when PBT fibers existed, iPP didn’t form the lamella stacking. After the fiber forom disappeared, the lamella stacking of iPP took place.
[1] McKee, M. G.; Wilkes, G. L.; Colby, R. H.; Long, T. E., Correlations of solution rheology with electrospun fiber formation of linear and branched polyesters. Macromolecules 2004, 37 (5), 1760-1767.
[2] Wang, C.; Hsu, C. H.; Lin, J. H., Scaling laws in electrospinning of polystyrene solutions. Macromolecules 2006, 39 (22), 7662-7672.
[3] Ogorkiewicz, R., Mechanical properties of reinforced thermoplastics. Composites 1971, 2 (1), 29-32.
[4] Wang, C.; Jheng, J. H.; Chiu, F. C., Electrospun nylon-4,6 nanofibers: solution rheology and Brill transition. Colloid and Polymer Science 2013, 291 (10), 2337-2344.
[5] Wang, C.; Hashimoto, T., Self-Organization in Electrospun Polymer Solutions: From Dissipative Structures to Ordered Fiber Structures through Fluctuations. Macromolecules 2018, 51 (12), 4502-4515.
[6] Heikkila, P.; Soderlund, L.; Uusimaki, J.; Kettunen, L.; Harlin, A., Exploitation of electric field in controlling of nanofiber spinning process. Polymer Engineering and Science 2007, 47 (12), 2065-2074.
[7] Li, H. H.; Zhang, X. Q.; Duan, Y. X.; Wang, D. J.; Li, L.; Yan, S. K., Influence of crystallization temperature on the morphologies of isotactic polypropylene single-polymer composite. Polymer 2004, 45 (23), 8059-8065.
[8] Wang,C.; Hwang, L. M., Transcrystallization of PTFE fiber PP composites .1. Crystallization kinetics and morphology. Journal of Polymer Science Part B-Polymer Physics 1996, 34 (1), 47-56.
[9] Loos, J.; Schimanski, T.; Hofman, J.; Peijs, T.; Lemstra, P. J., Morphological investigations of polypropylene single-fibre reinforced polypropylene model composites. Polymer 2001, 42 (8), 3827-3834.
[10] Sukhanova, T. E.; Lednicky, F.; Urban, J.; Baklagina, Y. G.; Mikhailov, G. M.; Kudryavtsev, V. V., MORPHOLOGY OF MELT CRYSTALLIZED POLYPROPYLENE IN THE PRESENCE OF POLYIMIDE FIBERS. Journal of Materials Science 1995, 30 (9), 2201-2214.
[11] Gray, D. G.; Guillet, J. E., OPEN TUBULAR COLUMNS FOR STUDIES ON POLYMER STATIONARY PHASES BY GAS-CHROMATOGRAPHY. Journal of Polymer Science Part C-Polymer Letters 1974, 12 (4), 231-235.
[12] Wang, C.; Liu, C. R., Transcrystallization of PTFE fiber PP composites - III. Effect of fiber pulling on the crystallization kinetics. Journal of Polymer Science Part B-Polymer Physics 1998, 36 (8), 1361-1370.
[13] Cai, Y. Q.; Petermann, J.; Wittich, H., Transcrystallization in fiber-reinforced isotactic polypropylene composites in a temperature gradient. Journal of Applied Polymer Science 1997, 65 (1), 67-75.
[14] Thomason, J. L.; Vanrooyen, A. A., TRANSCRYSTALLIZED INTERPHASE IN THERMOPLASTIC COMPOSITES .2. INFLUENCE OF INTERFACIAL STRESS, COOLING RATE, FIBER PROPERTIES AND POLYMER MOLECULAR-WEIGHT. Journal of Materials Science 1992, 27 (4), 897-907.
[15] 馬振基, 高分子複合材料: 上册 (修訂本). 國立編譯館出版: 2009.
[16] Mathew, G.; Hong, J. P.; Rhee, J. M.; Leo, D. J.; Nah, C., Preparation and anisotropic mechanical behavior of highly-oriented electrospun poly(butylene terephthalate) fibers. Journal of Applied Polymer Science 2006, 101 (3), 2017-2021.
[17] Forouharshad, M.; Saligheh, O.; Arasteh, R.; Farsani, R. E., Manufacture and Characterization of Poly (butylene terephthalate) Nanofibers by Electrospinning. Journal of Macromolecular Science Part B-Physics 2010, 49 (4), 833-842.
[18] Yokouchi, M.; Sakakibara, Y.; Chatani, Y.; Tadokoro, H.; Tanaka, T.; Yoda, K., Structures of two crystalline forms of poly (butylene terephthalate) and reversible transition between them by mechanical deformation. Macromolecules 1976, 9 (2), 266-273.
[19] Park, C. S.; Lee, K. J.; Kim, S. W.; Lee, Y. K.; Nam, J. D., Crystallinity morphology and dynamic mechanical characteristics of PBT polymer and glass fiber-reinforced composites. Journal of Applied Polymer Science 2002, 86 (2), 478-488.
[20] Wunderlich, B., Macromolecular Physics, Vol. 1 Crystal Structure, Morphology, Defect. Academic Press: New York: 1973.
[21] Lotz, B.; Wittmann, J. C.; Lovinger, A. J., Structure and morphology of poly(propylenes): A molecular analysis. Polymer 1996, 37 (22), 4979-4992.
[22] Bruckner, S.; Meille, S. V.; Petraccone, V.; Pirozzi, B., POLYMORPHISM IN ISOTACTIC POLYPROPYLENE. Progress in Polymer Science 1991, 16 (2-3), 361-404.
[23] Nakamura, K.; Shimizu, S.; Umemoto, S.; Thierry, A.; Lotz, B.; Okui, N., Temperature Dependence of Crystal Growth Rate for alpha and beta Forms of Isotactic Polypropylene. Polymer Journal 2008, 40 (9), 915-922.
[24] Shen, S. Q.; Bao, R. Y.; Liu, Z. Y.; Yang, W.; Xie, B. H.; Yang, M. B., Unique crystallization behaviors of isotactic polypropylene in the presence of MWCNT supported beta nucleating agent: Lower temperature T(alpha beta)-T(beta alpha) interval and fast cooling preferred formation of b crystals. Polymer 2016, 95, 26-35.
[25] Liu, Q.; Sun, X. L.; Li, H. H.; Yan, S. K., Orientation-induced crystallization of isotactic polypropylene. Polymer 2013, 54 (17), 4404-4421.
[26] Sheng, Q.; Zhang, Y.; Xia, C.; Mi, D.; Xu, X.; Wang, T.; Zhang, J., A new insight into the effect of beta modification on the mechanical properties of iPP: The role of crystalline morphology. Materials & Design 2016, 95, 247-255.
[27] Larrondo, L.; St. John Manley, R., Electrostatic fiber spinning from polymer melts. I. Experimental observations on fiber formation and properties. Journal of Polymer Science: Polymer Physics Edition 1981, 19 (6), 909-920.
[28] Lyons, J.; Li, C.; Ko, F., Melt-electrospinning part I: processing parameters and geometric properties. Polymer 2004, 45 (22), 7597-7603.
[29] Dalton, P. D.; Grafahrend, D.; Klinkhammer, K.; Klee, D.; Moller, M., Electrospinning of polymer melts: Phenomenological observations. Polymer 2007, 48 (23), 6823-6833.
[30] Wang, C.; Hsieh, T. C.; Cheng, Y. W., Solution-Electrospun Isotactic Polypropylene Fibers: Processing and Microstructure Development during Stepwise Annealing. Macromolecules 2010, 43 (21), 9022-9029.
[31] Liu, S. Y.; Liang, Y. Y.; Quan, Y. B.; Dai, K.; Zheng, G. Q.; Liu, C. T.; Chen, J. B.; Shen, C. Y., Electrospun isotactic polypropylene fibers: Self-similar morphology and microstructure. Polymer 2013, 54 (12), 3117-3123.
[32] Zeng, F. X. Y.; Peng, H. M.; Chen, J. Y.; Kang, J.; Yang, F.; Cao, Y.; Xiang, M., Investigation on the crystallization behavior and morphology of beta-nucleated isotactic polypropylene/glass fiber composites. Soft Materials 2017, 15 (3), 229-240.
[33] Abdou, J. P.; Reynolds, K. J.; Pfau, M. R.; van Staden, J.; Braggin, G. A.; Tajaddod, N.; Minus, M.; Reguero, V.; Vilatela, J. J.; Zhang, S. J., Interfacial crystallization of isotactic polypropylene surrounding macroscopic carbon nanotube and graphene fibers. Polymer 2016, 91, 136-145.
[34] Wang, C.; Chu, Y. L.; Wu, Y. J., Electrospun isotactic polystyrene nanofibers as a novel beta-nucleating agent for isotactic polypropylene. Polymer 2012, 53 (23), 5404-5412.
[35] Wang, C.; Fang, C. Y.; Wang, C. Y., Electrospun poly(butylene terephthalate) fibers: Entanglement density effect on fiber diameter and fiber nucleating ability towards isotactic polypropylene. Polymer 2015, 72, 21-29.
[36] Wang, C.; Wu, Y. J.; Fang, C. Y.; Tsai, C. W., Electrospun nanofiber-reinforced polypropylene composites: Nucleating ability of nanofibers. Composites Science and Technology 2016, 126, 1-8.
[37] Avrami, M., Kinetics of phase change. I General theory. The Journal of chemical physics 1939, 7 (12), 1103-1112.
[38] Avrami, M., Kinetics of phase change. II transformation‐time relations for random distribution of nuclei. The Journal of chemical physics 1940, 8 (2), 212-224.
[39] Grenier, D.; Prud Homme, R. E., Avrami analysis: three experimental limiting factors. Journal of Polymer Science: Polymer Physics Edition 1980, 18 (7), 1655-1657.
[40] 謝采娟, “高溫電紡同排聚丙烯奈米纖維及其微結構鑑定”, 成功大學, 2010.
[41] Wang, C.; Wang, Y.; Hashimoto, T., Impact of entanglement density on solution electrospinning: a phenomenological model for fiber diameter. Macromolecules 2016, 49 (20), 7985-7996.
[42] 李政霖, “含電紡同排聚苯乙烯纖維/聚丙烯複材之製備與熱性質”,成功大學, 2016.
[43] Varga, J., Supermolecular structure of isotactic polypropylene. Journal of Materials Science 1992, 27 (10), 2557-2579.
[44] Varga, J., β-modification of isotactic polypropylene: preparation, structure, processing, properties, and application. Journal of Macromolecular Science, Part B 2002, 41 (4-6), 1121-1171.
[45] Wang, C.; Lee, J. L.; Landingin, J.; Ko, C.-H., β-modification of isotactic polypropylene induced by electrospun isotactic polystyrene fibers. Polymer 2019, 176, 236-243.
[46] Brandrup, J.; Immergut, E. H.; Grulke, E. A.; Abe, A.; Bloch, D. R., Polymer handbook. Wiley New York: 1999; Vol. 89.
[47] Fayazi, M.; Afzali, D.; Mostafavi, A., Pre-concentration procedure using dispersive liquid–liquid microextraction for the determination of bismuth by flame atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry 2011, 26 (10), 2064-2068.
[48] Pena-Pereira, F.; Lavilla, I.; Bendicho, C., Miniaturized preconcentration methods based on liquid–liquid extraction and their application in inorganic ultratrace analysis and speciation: A review. Spectrochimica Acta Part B: Atomic Spectroscopy 2009, 64 (1), 1-15.
[49] Ouyang, B.; Starkey, T. G.; Howard, B. J., High-resolution microwave studies of ring-structured complexes between trifluoroacetic acid and water. The Journal of Physical Chemistry A 2007, 111 (28), 6165-6175.
[50] Yagita, K.; Ono, Y., 1987. Hollow fiber membrane formed from a block copolymer of aromatic polyester and polyoxyethylene for dialysis of blood. U.S. Patent No. 4705632.