簡易檢索 / 詳目顯示

研究生: 劉啟文
Liu, Chi-Wen
論文名稱: 超音速燃燒流場噴霧及點火特性研究之數值模擬分析
Numerical simulations of the spray and ignition characteristics in the supersonic combustion flow
指導教授: 江滄柳
Jiang, Tsung-Leo
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 135
中文關鍵詞: 超音速燃燒液態燃料噴注凹槽點火延遲數值模擬
外文關鍵詞: Supersonic combustion, Liquid fuel injection, Cavity, Ignition delay, Numerical simulation
相關次數: 點閱:141下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在超音速燃燒流場中,液態煤油需要經過破碎、蒸發以及點燃過程,其中點火延遲時間對超音速燃燒流場為不可忽略因素。本研究選用計算流體力學軟體ANSYS FLUENT分析超音速燃燒流場中液態燃料噴霧與點火特性。首先根據Tian等人在2019年所發表之文獻,將本研究所建立的數值模擬方法計算結果與實驗冷流場實驗之上壁面壓力分佈做比對。接著利用Zhang等人煤油反應式放入Tian等人二維超音速燃燒模型,以驗證本研究數值方法的可靠及準確性。
    接著參考Tian等人之文獻,建立一組三維對稱超音速幾何模型,在凹槽後方建立一壓力偵測點,發現此模型在冷流場達到一定時間時,偵測點壓力會出現規則性震盪,此模擬結果與文獻實驗相似。此外也在開啟凹槽後方空氣噴注後,發現其對於超音速流場之穩定有莫大幫助。最後,根據不同流通量比(Flux ratio)探討對點火之影響,其火星塞(spark)設置在凹槽正中心,流通量定義為空氣噴注與自由流流量比值,其流通量比分別為12 %與24.5 %。當流通量比為12 %,點火範圍會由下游延伸至入口處;流通量比為24.5 %時,由於空氣噴注流量更高,使入口附近流場產生迴流區。當空氣噴注孔半徑固定的條件下,較大空氣噴注流量會擁有較快噴注速度,因此較能阻擋自由流,使自由流速度減緩,點火後燃燒範圍進而延伸到入口附近。結果顯示當點火完成後,其燃燒區域穩定存在於凹槽斜壁面與兩側壁面。

    In a supersonic combustion flow field, liquid kerosene is required to undergo a breakup, evaporation, and ignition process. The ignition delay time is a very important factor in a supersonic combustion flow field. In this study, the computational fluid dynamics software ANSYS FLUENT is used to analyze the effects of the spray and ignition mechanism on a supersonic combustion flow field with liquid fuel injection. First, according to the Tian et al. (2019), our numerical simulation results were proven through a comparison with the top wall pressure distribution of an experimental cold flow. Then, based on Zhang et al. (2014), the kerosene reaction where cracking due to rises in the temperature was considered was put into the two-dimensional supersonic combustion model of Tian et al. (2019), and the accuracy of the proposed numerical method was proven. The numerical ignition delay time was shown to be similar to that of the experimental results.
    Second, following Tian et al. (2019), we built a symmetrical three-dimensional model, where the numerical results predicted that the monitored pressure would exhibit regular oscillation. Our numerical results were similar to the experimental results. Also, the air throttling operation behind the cavity was found to be beneficial in terms of stabilizing the supersonic flow field. Finally, the effects on ignition were discussed for different flux ratios of 12% and 24. 5%. When the flux ratio was 12%, the flow field was relatively stable due to air throttling. However, when the flux ratio was 24.5%, the air throttling flow rate was higher, and the near entrance flow was affected by the ignition field, which caused a vortex to appear near the freestream inlet. When the radius of the air injection hole was fixed, the large air throttling flow rate led to a faster jet speed, which caused the free stream to be blocked and slowed it down and where the ignition field extended to the near entrance. Finally, when the ignition was stabilized, the combustion field became stable in the cavity ramp and on both side walls.

    摘要I 致謝XV 目錄XVII 表目錄XX 圖目錄XXI 符號說明XXVII 第一章導論1 §1-1前言1 §1-2文獻回顧2 §1-3研究動機與目的10 第二章數學與物理模型12 §2-1基本假設13 §2-2連續相流場之統御方程式13 §2-3紊流模型18 §2-4離散相流場之統御方程式21 §2-5燃燒化學模型37 第三章數值方法41 §3-1控制體積轉換之傳輸方程式41 §3-2壓力耦合演算法求解器42 §3-3二階上風法43 §3-4離散相計算流程44 §3-5鬆弛因子44 §3-6收斂標準45 第四章結果與討論46 §4-1二維超音速燃燒室之網格模型與邊界條件47 §4-2二維超音速燃燒室之網格獨立測試48 §4-3二維文獻驗證及超音速燃燒模型分析48 §4-4三維超音速燃燒室網格模型與邊界條件52 §4-5三維超音速燃燒室之網格獨立測試53 §4-6三維文獻驗證及超音速燃燒模型分析53 §4-7以TIME MARCH 方式計算三維流場壓力型態54 §4-8空氣噴注開啟對三維流場之影響55 §4-9流通量比為12%之超音速點火流場分析56 §4-10流通量比為24.5%之超音速點火流場分析60 §4-11不同流通量比值之超音速點火特徵之比較65 第五章結論與未來建議66 §5-1結論66 §5-2未來建議69 參考文獻70 表 附錄76 圖 附錄80

    【1】 Lewis,M.J., 2001, “Significance of Fuel Selection for Hypersonic Vehicle Range,”Journal of Propulsion and Power, Vol.17, No.6, pp.1214-1221.
    【2】 Tetlow,M.R., and Doolan,C.J.,2007,“Comparison of Hydrogen and Hydrocarbon-Fueled Scramjet Engine for Orbital Insertion,”Journal of Spacecraft and Rockets, Vol.44, No.2, pp.365-373.
    【3】 Powell,O.A.,Edwards,J.T.,Norris,R.B.,Numbers,K.E.,and Pearce,J.A.,2001,“Development of Hydrocarbon-Fueled Scramjet Engines: The Hypersonic Technology Program,”Journal of Propulsion and Power, Vol.17, No.6, pp.1170-1176.
    【4】 Manna,P.,Behera,R.,and Chakraborty,D.,2008,“Liquid-Fueled Strut-Based Scramjet Combustor Design: a Computational Fluid Dynamics Approach,”Journal of Propulsion and Power, Vol.24,No.2,pp.274-281.
    【5】 Lin, K. C., Kirkendall, K. A., Kennedy, P. J., and Jackson, T. A., 1999, “Spray Structures of Aerated Liquid Fuel Jets in Supersonic Crossflows,”AIAA Joint Propulsion Conference and Exhibit, AIAA1999-2374.
    【6】Yu,G.,Li,J.G.,Yang,S.R.,Yue,L.J.,and Zhang,X.Y., 2002,“Investigation of Liquid Hydrocarbon Combustion in Supersonic Flow Using Effervescent Atomization,” AIAA Joint Propulsion Conference and Exhibit, AIAA2002-4279.
    【7】 Yue, L. J., and Yu, G., 2003, “Studies on Spray Characteristics of Barbotaged Atomizer,”Journal of Propulsion Technology, Vol.24, No.4, pp.348-352.
    【8】 Balasubramanyam,M.S.,and Chen,C.P.,2006,“Evaporating Spray in Supersonic Streams including Turbulence Effects,”44th AIAA Aerospace Sciences Meeting and Exhibit,AIAA-2006-1338.
    【9】 Yue,L.J.,and Yu,G.,2004,“Numerical Simulation of Kerosene Spray in Supersonic Cross Flow,”Journal of Propulsion Technology,Vol.25,No.1,pp.11-14.
    【10】劉靜,徐旭, 2010,“超音速橫向氣流中燃料霧化的數值模擬,”北京航空航天大學學報,Vol.36,No.10.
    【11】Yang,D.C.,Zhu,W.B.,Chen,H.,Guo,J.X.,and Liu,J.W.,2014,“Model the Secondary Breakup of a Liquid Jet in Supersonic Cross Flows,”Journal of Harbin Engineering University,Vol.35,No.1,pp.62-68.
    【12】Im, K. S., Lin, K. C., and Lai, M. C., 2005, “Spray Atomization of Lquid Jet in Supersonic Cross Flows,” AIAA Aerospace Sciences Meeting and Exhibit, AIAA2005-732.
    【13】Im,K.S.,Lin,K.C.,Lai,M.C.,and Chon,M.S.,2011,“Breakup Modeling of a Liquid Jet in Cross Flow,”International Journal of Automotive Technology,Vol.12,pp.489-496.
    【14】Zhu,L.,Qi,Y.Y.,Liu,W.L.,Xu.B.J.,Ge.J.R.,Xuan,X.C.,and Jen,T.C.,2016,“Numerical Investigation of Scale Effect of Various Injection Diameters on Interaction in Cold Kerosene-Fueled Supersonic Flow,” Acta Astronautica, Vol.129, pp.111-120.
    【15】Fan,X.F.,Wang,J.F.,Zhao,F.M.,Li,J.W.and Yang,T.P.,2018, “Eulerian-Lagrangian Method for Liquid Jet Atomization in Supersonic Crossflow Using Statistical Injection Model,”Advances in Mechanical Engineering,Vol.10,No. 2,pp.1-13.
    【16】楊成麥, 2019 ,“噴霧模式之參數對液態燃料注入超音速流場數值模擬分析影響之研究,” 國立成功大學航空太空工程學系碩士論文.
    【17】Menter,F.R.,1994,“Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications,”AIAA Journal,Vol 32,pp.1598-1605.
    【18】Gruber,M.R.,Bauerle,R.A.,Mathur,T.,and Hsu,K.Y.,2001, “Fundamental Studies of Cavity-Based Flameholder Concepts for Supersonic Combustors,”Journal of Propulsion and Power,Vol.17,No.1,pp.146-153.
    【19】Gruber,M.R.,Donbar,J.M.,Carter,C.D.,and Hsu,K.Y.,2004, “Mixing and Combustion Studies Using Cavity-Based Flameholders in a Supersonic Flow,”Journal of Propulsion and Power,Vol.20,No.5,pp.769-778.
    【20】Kim,K.M.,Baek,S.W.,and Han,C.Y.,2004,“Numerical Study on Supersonic Combustion with Cavity-Based Fuel Injection,”International Journal of Heat and Mass Transfer,Vol.47,pp.271-286.
    【21】林翰毅, 2012,“凹槽機構對超燃衝壓引擎流場之影響,”國立成功大學航空太空工程學系碩士論文.
    【22】陳家禾,2018,“凹槽機構之幾何參數對於超音速流場影響之數值模擬分析,”國立成功大學航空太空工程學系碩士論文.
    【23】Yu,G.,Li,J.G.,Chang,X.Y.,Chen,L.H.,and Sung,C.J.,2003,“Fuel Injection and Flame Stabilization in a Liquid-Kerosene-Fueled Supersonic Combustor,”Journal of Propulsion and Power,Vol.19,No.5,pp.885-893.
    【24】鄭瑞圻, 2013,“使用液態碳氫燃料之超音速燃燒流場模擬分析,”國立成功大學航空太空工程學系碩士論文.
    【25】Wang,L.,Qian,Z.S.,and Gao,L.J.,2015,“Numerical Study of the Combustion Field in Dual-Cavity Scramjet Combustor,”Procedia Engineering,Vol.99,pp.313-319.
    【26】Tian,Y.,Yang,S.,Le,J.,Zhong,F.,and Tian,X.,2017 “Investigation of The Effects of Fuel Injector Locations on Ignition and Flame Stabilization in a Kerosene Fueled Scramjet Combustor,”Acta Astronautica,Vol.70,pp.310-316.
    【27】Tian,Y.,Zeng,X.,Yang,S.,and Zhong,J.,2019“Experimental Study on Flame Development and Stabilization in a Kerosene Fueled Supersonic Combustor,”Acta Astronautica,Vol.84,pp.510-519.
    【28】Tian,Y.,Yang,S.,Xiao,B.,Zhong,F.,and Le,J.,2019 “Investigation of Ignition Characteristics in a Kerosene Fueled Supersonic Combustor,”Acta Astronautica,Vol.161,pp.425-429.
    【29】Zhang,X.,Qin,L.,Chen,H.,He,X.,and Liu,Y.,2014,“Radical Recombination in a Hyfrocarbon-Fueled Scramjet Nozzle,”Acta Astronautica,Vol.27,pp.1413-1420.
    【30】郭建嘉, 2017 ,“凹槽機構對液態燃料噴注之超音速燃燒流場影響之數值模擬分析,”國立成功大學航空太空工程學系碩士論文.
    【31】ANSYS FLUENT, 2013,“Ansys Fluent 15.0 user guide,”ANSYS Inc.
    【32】Ranz,W.E.,and Marshall,W.R.,1952,“Evaporation from Drops,Part II,”Chemical Engineering Progress Magazine, Vol.48,pp.173-180.
    【33】Iannetti,A.C.,and Moder,J.P.,2010,“Comparing Spray Characteristics from Reynolds Averaged Navier-Stokes (RANS) and National Combustion Code (NCC) Calculations Against Experimental Data for a Turbulent Reacting Flow,”35th AIAA Aerospace Sciences Meeting,AIAA-2010-578.

    無法下載圖示 校內:2022-09-07公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE