| 研究生: |
李奕奇 Lee, Yi-Chi |
|---|---|
| 論文名稱: |
以ABAQUS有限元素法分析四點彎曲試體之I+II型應力強度因子 Determination of I + II Stress Intensity Factors of the Four-Point Bending Specimen by a Finite Element Analysis with ABAQUS |
| 指導教授: |
王建力
Wang, Jian-Li |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 應力強度因子 、四點彎曲試驗 、ABAQUS 、有限元素分析 |
| 外文關鍵詞: | Stress intensity factors(SIFs), Four-point bending test(FPBT), ABAQUS, Finite element analysis(FEA) |
| 相關次數: | 點閱:161 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以ABAQUS有限元素軟體分析六種不同載重位置下,對純I型、純II型與I+II複合型之四點彎曲斷裂韌度試驗模型,分析其應力強度因子對於裂隙比(裂縫長度/試體寬度)的變化。本研究以無因次因子(YI代表I型、YII代表II型)表示所計算的應力強度因子。本研究針對元素選取、網格劃分(全域和收斂區域)、資料點在裂縫上的選取位置,分別討論計算結果的適當性。
本研究發現在裂縫尖端附近使用楔型體奇異元素時,其結果較六面體奇異元素浮動較小,此外並無差異。在比較Wang et al.(1977)與徐等人(1984)所得之結果時,本研究計算所得之YI值於兩者之間且變化趨勢相當一致,YII值隨裂隙比的變化趨勢則是與徐等人的結果相似。本研究發現ABAQUS在計算純II型的模型中會出現KI值,此值會隨裂隙比變大而減少,在實際應用上宜注意此可能造成的計算誤差。
In this study, the models were established by a finite element program ABAQUS following Lee (2018). The simulation was based on the single edge-cracked four-point bending tests (FPBT) of granite specimens based on the study of Lai (2001). Six sets of loading configurations were used to simulate the mode-I, mode-II and mixed-mode I+II conditions. Then the mixed-mode stress intensity factors (SIFs) as a function of crack to depth ratio (a/W) were investigated in this study. YI and YII defined by this study represent the forms of dimensionless SIFs. The applications of the ABAQUS under different scenarios of element selection, mesh controls in particular area and the distribution of SIFs on crack front were discussed.
This study demonstrates that wedge singular elements for crack front region can provide better results than hexahedron elements. The YI results are similar to the results by Wang et al (1977) and Xu (1984). The YII results are similar to those by Xu (1984). The KI values may be found in pure mode-II models, and increase when crack length decreases. It should be noted that this may cause calculation errors.
1. 士盟科技股份有限公司(2013)。ABAQUS最新實務入門。台北市:全華圖書股份有限公司。
2. 王建力、張育源、石秉儒、郭俊志(2019)。以四點彎曲試驗量測不同溫度作用下砂岩複合型斷裂韌度之研究。中國土木水利工程學刊,31(7)。
3. 王凱正(2007)。以單壓雙裂縫試驗量測石膏Ⅱ型破裂韌度之研究,國立成功大學資源工程學系碩士論文。
4. 石秉儒(2018)。不同溫度下砂岩之四點彎曲複合型斷裂韌度試驗與其基本力學性質之研究。國立成功大學資源工程學系碩士論文。
5. 李權仁(2018)。以四點彎曲試驗決定I+II型斷裂韌度之有限元素數值模擬。國立成功大學資源工程學系碩士論文。
6. 林昆慶(2008)。以矩形板試體求取花崗岩石材 I 型破裂韌度之研究。國立成功大學資源工程學系碩士論文。
7. 林家煌(2008)。以剪切盒試驗求取花崗岩石材 I 型破壞韌度之研究,國立成功大學資源工程學系碩士論文。
8. 陳思瑩(2012)。超臨界二氧化碳環境下對套管水泥斷裂韌度影響之研究,國立成功大學資源工程學系碩士論文。
9. 徐道遠、符曉鈴(1984)。四点剪切試樣確定混凝土複合型裂纹斷裂判據的測試研究。水利學報,(9),63-69。
10. 張育源(2017)。四點彎曲試驗下砂岩之複合型斷裂韌度與其基本力學性質之研究。國立成功大學資源工程學系碩士論文。
11. 郭俊志(2009),砂岩與壓克力複合型裂紋擴展機制之研究,國立成功大學資源工程學系碩士論文。
12. 莊翌君(2007)。以剪切盒試驗量測石膏 ΙΙ 型破裂韌度之研究。國立成功大學資源工程學系碩士論文。
13. 蔡佳偉(2008),以雙裂縫試驗量測膠結石膏 II 型破裂韌度之研究,國立成功大學資源工程學系碩士論文。
14. 賴禹村,硫酸鈉溶液環境下飛灰水泥基本力學性質之研究,國立成功大學資源工程學系碩士論文 (2010)。
15. 賴俊仁(2001)。四點彎曲作用下花崗岩混合模式破裂韌度量測之研究。國立成功大學資源工程學系碩士論文。
16. 謝其泰(2003)。石材裂紋擴展量測之研究,國立成功大學資源工程學系碩士論文。
17. Abaqus documentation. (2020). Retrieved 6 April 2020, from https://abaqus-docs.mit.edu/2017/English/SIMACAEEXCRefMap/simaexc-c-docproc.htm
18. Agnihotri, S. K. and Parameswaran, V. (2016). Mixed-mode fracture of layered plates subjected to in-plane bending, International Journal of Fracture, Vol. 197, pp. 63-79.
19. Anderson, T. L. (1991)“Fracture mechanics fundamental and applications,” CRC Press, Florida, pp. 100–101,
20. Asgari Mehrabadi, F. (2013). Analysis of pure mode III and mixed mode (III+II) interlaminar crack growth in polymeric woven fabrics. Materials & Design, 44, 429-437.
21. Ayatollahi, M. R., M. R. M. Aliha. (2011). On the use of an anti-symmetric four-point bend specimen for mode II fracture experiments. Fatigue and Fracture of Engineering Materials and Structures, Vol. 34, pp. 898–907.
22. Ballatore, E., Carpinteri, A., Ferrara, G., and Melchiorri,G. (1990). Mixed mode fracture energy of concrete, Engineering Fracture Mechanics, Vol. 35, No. 1/2/3, pp.145-157.
23. Banerjee, P.K. (1994), “The boundary element methods in engineering”, University Press, Cambridge, pp. 299–301.
24. Barsoum, R. (1976). On the use of Isoparametric finite elements in linear fracture mechanics. International Journal for Numerical Methods in Engineering, 10(1), 25-37.
25. Brebbia, C. A., J. Dominguez. (1992). “Boundary elements an introductory course 2nd edition”, Computational Mechanics Publications, Boston and Southampton, pp. 278–283.
26. Byskov, E. (1970). The calculation of stress intensity factors using the finite element method with cracked elements. International Journal of Fracture Mechanics, 6(2).
27. Dong, W., Wu, Z., and Zhou, X. (2016). Fracture mechanisms of rock-concrete interface: experimental and numerical, Journal of Engineering Mechanics, Vol. 142, No. 7, 04016-040.
28. Dourado, N., de Moura, M., Xavier, J., and Pereira, F. (2015). A new procedure for mode I fracture characterization of cement-based materials, Strain, Vol. 51, pp. 483-491
29. Griffith, A.A. (1920). The Phenomena of Rupture and Flow in Solids. Philosophical Transactions, Series
30. A, Vol. 221, pp. 163–198.
31. Hibbitt, Karlsson & Sorensen. (2001). ABAQUS user's manual. Pawtucket, RI.
32. Inglis, C. (1913). Stress in a Plate Due to the Presence of Crack and Sharp Corners. Transactions of Institute Of Naval Architects, 55, 219-241.
33. Irwin, G.R.(1948). “Fracture Dynamics.” Fracture of Metals, American Society for Metals, PP. 147-166.
34. Irwin, G.R. (1956). “Onset of Fast Crack Propagation in High Strength Steel and Aluminum Alloys.” Sagamore Research Conference Proceedings, Vol. 2, pp.289-305.
35. Irwin, G.R. (1957).”Analysis of Stresses and Strains near the End of a Crack Traversing a Plate.” Journal of Applied Mechanics, Vol. 24, pp. 361-364.
36. Kostopoulos, V., Kotrotsos, A., Baltopoulos, A.,Tsantzalis, S., Tsokanas, P., Loutas, T., and Bosman, A.W. (2016). Mode II fracture toughening and healing ofcomposites using supramolecular polymer interlayers, Express Polymer Letters, Vol. 10, 11, pp. 914-926.
37. Lie, S., Lee, C., Chiew, S., & Shao, Y. (2005). Validation of surface crack stress intensity factors of a tubular K-joint. International Journal of Pressure Vessels And Piping, 82(8), 610-617.
38. Mahanta, B., Singh, T. N., and Ranjith, P. G. (2016). Influence of thermal treatment on mode I fracture toughness of certain Indian rocks. Engineering Geology, Vol. 210, pp.103-114.
39. Malíková, L. (2015). Multi-parameter fracture criteria for the estimation of crack propagation direction applied to a mixed-mode geometry. Engineering Fracture Mechanics, 143, 32-46.
40. Mousavi, S., Aliha, M., & Imani, D. (2020). On the use of edge cracked short bend beam specimen for PMMA fracture toughness testing under mixed-mode I/II. Polymer Testing, 81, 106199.
41. Nikolic, R., & Veljkovic, J. (2005). Elastic-plastic analysis of crack on bimaterial interface. Theoretical and Applied Mechanics, 32(3), 193-207.
42. Orowan, E. (1948). “Fracture and Strength of Soilds.” Reports on Progress in Physics, Vol. XII, p. 185.
43. Pérez-Galmés, M., Renart, J., Sarrado, C., RodríguezBellido, A. (2016). and Costa, J., A data reduction method based on the J-integral to obtain the interlaminar fracture toughness in a mode II end-loaded split (ELS) test, Composites: Part A, Vol. 90, pp. 670-677.
44. Razavi, S., Aliha, M., & Berto, F. (2018). Application of an average strain energy density criterion to obtain the mixed mode fracture load of granite rock tested with the cracked asymmetric four-point bend specimens. Theoretical and Applied Fracture Mechanics, 97, 419-425.
45. Rice, J.R. and Rosengren, G.F. (1968). Plane Strain Deformation near a Crack Tip in a Power-Law Hardening Material. Journal of the Mechanics and Physics of Soilds, Vol. 16, pp. 1-12.
46. Rizov, V. (2013). Mixed-mode I/II fracture study of polymer composites using single edge notched bend specimens, Computational Materials Science, Vol. 77, pp. 1-6.
47. Seitl, S., Miarka, P., Sobek, J., & Klusák, J. (2017). A numerical investigation of the stress intensity factor for a bent chevron notched specimen: Comparison of 2D and 3D solutions. Procedia Structural Integrity, 5, 737-744.
48. Shih, C., & Asaro, R. (1988). Elastic-Plastic Analysis of Cracks on Bimaterial Interfaces: Part I—Small Scale Yielding. Journal of Applied Mechanics, 55(2), 299-316.
49. Tohgo, K., Otsuka, A., & Yuuki, R. (1986). Fatigue crack growth of a mixed mode three- dimensional crack (1st report, Analysis of stress intensity factors of mixed mode three- dimensional cracks based on the J-integral concept). Transactions of the Japan Society of Mechanical Engineers Series A, 52(476), 909-918.
50. Tracey, D. (1974). Finite elements for three-dimensional elastic crack analysis. Nuclear Engineering And Design, 26(2), 282-290.
51. Wang, C., Zhu, Z., & Liu, H. (2016). On the I-II mixed mode fracture of granite using four-point bend specimen. Fatigue & Fracture of Engineering Materials & Structures, 39(10), 1193-1203.
52. Wang, K., Hsu, C., & Kao, H. (1977). Calculation of stress intensity factors for combined mode bend specimens. Advances in Research on the Strength and Fracture of Materials, 4, 123-133.
53. Wei, M. D., F. Dai, N. W. Xu, J. F. Liu, Y. Xu. (2016). “Experimental and numerical study on the cracked chevron notched semi-circular bend method for characterizing the mode I fracture toughness of rocks,” Rock Mechanics and Rock Engineering, Vol. 49, pp. 1595–1609.
54. Wells, A.A.(1955). ”The Condition of Fast Fracture in Aluminum Alloys with Particular Reference to Comet Failures.” British Welding Research Association Report, April 1955.
55. Westergaard, H.M. (1957). “Bearing Pressures and Cracks.” Journal of Applied Mechanics, Vol. 24, pp.49-53.
56. Williams, M. L. (1957). On the Stress Distribution at the Base of a Stationary Crack. Journal of Applied Mechanics, 24, 109-114.
57. Xu, C., & Fowell, R. (1994). Stress Intensity Factor Evaluation for Cracked Chevron Notched Brazilian Disc Specimens. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 31(2), 157-162.
58. Zabala, H., Aretxabaleta, L., Castillo, G., and Aurrekoetxea, J. (2016). Dynamic 4 ENF test for a strain rate dependent mode II interlaminar fracture toughness characterization of unidirectional carbon fibre epoxy omposites, Polymer Testing, Vol. 55, pp. 212-218.
59. Zappalorto, M., Salviato, M., and Quaresimin, M. (2013), “Mixed mode (I + II) fracture toughness of polymer nanoclay nanocomposites,” Engineering Fracture Mechanics, Vol.111, pp. 50-64.
校內:2022-12-31公開