| 研究生: |
李沛杰 Lee, Pei-Chieh |
|---|---|
| 論文名稱: |
以油酸分散膠體配合氣氛加熱製造奈米氧化鋯粉末之研究 Preparation of Nanometer-Sized Zirconia Powders by Calcining an Emulsion of Precursor and Oleic Acid |
| 指導教授: |
溫紹炳
Wen, Shaw-Bing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 相轉換 、熱去除 、乳膠 、奈米 、化學沈澱法 |
| 外文關鍵詞: | transformation, thermal degration, emulsion, chemical precipitation, nano-meter |
| 相關次數: | 點閱:117 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一種加入界面活性劑於陶瓷微粉前導物中,在煆燒過程中利用殘碳作為阻斷結晶成長的製造方式,為陶瓷粉末製造提出一種新的思維模式。先以陶瓷粉末的膠體前導物與有機界面活性劑共同混合,乳化變成微小的微胞,再以這個乳化混合物置入控制氣氛的加熱爐之中,加熱過程中使有機界面活性劑分解而不燃燒,並遺留部份殘碳擔任微小粒子間的阻隔物,去除可能因相轉換過程中伴隨的粒子燒結或晶粒成長的發生以達成製造正方晶相奈米氧化鋯粉末的目的。
研究結果顯示,以油酸混拌前導物並添加3mol%氧化釔作為穩定劑,煆燒至1200℃可得到結晶性良好且晶粒大小約為20nm的正方晶相氧化鋯粉末。煆燒的過程不論是改變何種條件,一開始出現的結晶相都是正方晶相,隨著溫度的升高,正方晶相開始轉換為單斜晶相。根據對粒徑的觀察可證實Garvie所提出30nm臨界粒徑的存在。
none
參考文獻
1. Heuer H., “Transformation Toughening in ZrO2-Containing Ceramics”, J. Am. Ceram. Soc., 70, 689, 1987.
2. Kiukkola K., and C. Wagner, “Galvanic Cells for the Determination of the Standard Molar Free Energy of Formation of Metal Halides, Oxides, and Sulfides at Elevated Temperatures”, J. Electrochem. Soc., 104, 308, 1957.
3. Hino M., and K. Arata, “Synthesis of Solid Superacid Catalyst with Acid Strength of H0<-16.04”, J. Chem. Soc., 851, 1980.
4. Michel D., “Structure of Zirconia Prepared by Homogeneous Precipitation”, J. Am. Ceram. Soc., 11, 2873, 1995.
5. Dayal R., N. M. Gokhale, S. C. Sharma, R. Lal, and R. Krishnan, “Investigation of the Metastable Tetragonal Phase in Yttria-Doped Zirconia Powders Prepared by a Sol-Gel Technique”, Br. Ceram. Trans. J., 91, 45, 1992.
6. Lin J. D., and J. G. Duh, “Coprecipitation and Hydrothermal Synthesis of Ultrafine 5.5mol% CeO2-2mol% YO1.5-ZrO2 Powders”, J. Am. Ceram. Soc., 80, 92, 1997.
7. Denkewicz R. P., Jr., K. S. TenHuisen, and J. H. Adair, “Hydrothermal Crystallization Kinetics of m-ZrO2 and t-ZrO2”, J. Mater. Res., 5, 2698, 1990.
8. Moon Y. T., D. K. Kim, and C. H. Kim, “Preparation of Monodisperse ZrO2 by the Microwave Heating of Zirconyl Chloride Solutions”, J. Am. Ceram. Soc., 78, 1103, 1995.
9. Ogihara T., N. Mizutani, and M. Kato, “Processing of Monodispersed ZrO2 Powders”, Ceram. Int., 13, 35, 1987.
10. 史宗淮, “微粉製程技術簡介”, 化工, Vol.42, 28, 1996.
11. Ryshkewitch E., “Zirconia”; in Oxide Ceramics, 1st ed., Academic. Press., New York, 1960, Chap.II.5.
12. Green D. J., R. H. J. Hannink, and M.V. Swain, “Transformation Toughening of Ceramics”, CRC Press, Inc., 1989.
13. Scott H. G., “Phase Relationships in the Zirconia-yttria System”, J. Mater. Sci., 10, 1527, 1975.
14. Heuer A. H., “Stability of Tetragonal ZrO2 Particles in Ceramic Matrices”, J. Am. Ceram. Soc., 65, 642, 1982.
15. Srinivasan S., R. O. Scattergood, G. Pfeiffer, R. G. Sparks, and M. A. Paesler, “Low Temperature Treatment of Transformation Toughened Partially Stabilized Magnesia-Doped Zirconia”, J. Am. Ceram. Soc., 73, 1421, 1990.
16. Masaki T., “Machanical Properties of Toughened ZrO2-Y2O3 Ceramics”, J. Am. Ceram. Soc., 69, 638, 1986.
17. Noguchi K., M. Fujita, T. Masaki, and M. Mizushina, “Tensile Strength of Yttria-Stabilized Tetragonal Zirconia Polycrystals”, J. Am. Ceram. Soc., 72, 1305, 1989.
18. Wolten G. M., “Diffusionless Phase Transformations in Zirconia and Hafnia”, J. Am. Ceram. Soc., 6, 418, 1963.
19. King A. G., and P. J. Yavorsky, “Stress Relief Mechanisms in Magnesia and Yttria-Stabilized Zirconia”, J. Am. Ceram. Soc., 51, 38, 1968.
20. Garvie R. C., and P. S. Nicholson, “Structure and Thermomechanical Properties of Partially stabilized Zirconia in the CaO-ZrO2 System”, J. Am. Ceram. Soc., 55, 192, 1972.
21. Porter D. L., and A. H. Heuer, “Mechanism of Toughening Partially Stabilized Zirconia(PSZ)”, J. Am. Ceram. Soc., 60, 183, 1977.
22. Evans A. G., F. F. Lange, M. V. Swain, and A. H. Heuer, “Transformation Toughening : An Overview”, J. Am. Ceram. Soc., 69, i-iv, 1986.
23. 汪建民主編, 陶瓷技術手冊(上)、(下), 中華民國粉末冶金學會, 1994.
24. Claussen N., “Fracture Toughness of Al2O3 With An Stabilized ZrO2 Dispersed Phase”, J. Am. Ceram. Soc., 59, 49, 1976.
25. Marshall D. B., and M. R. James, “Reversible Stress-induced Martensitic Transformation in ZrO2”, J. Am. Ceram. Soc., 69, 215, 1986.
26. Nernst W., “Electrolytic Conduction in Solid Substances at High Temperatures”, Z. Elektrochem., 6, 41, 1900.
27. Ryshkewitch E., and D. W. Richerson, “Oxide Ceramics”, 2nd ed., Academic Press, New York, 1985.
28. Tsukuma K., “Mechanical Properties and Thermal Stability of CeO2 Containing Tetragonal Zirconia Polycrystals”, Am. Ceram. Soc. Bull., 65, 1386, 1986.
29. Garvie R. C., “Zirconium Dioxide and Some of Its Binary System”, in High Temperature Oxides, Vol.5-II, Ed. by A. M. Alper, Academic Press, New York, 1970, chap.4.
30. Garvie R. C., “The Occurrence of Metastable Tetragonal Zirconia as a Crystallite Size Effect”, J. Phys. Chem., 69, 1238, 1965.
31. Garvie R. C., “Stabilization of the Tetragonal Structure in Zirconia Microcrystals,” J. Phys. Chem., 82, 218, 1978.
32. Livage J., K. Doi, and C. Mazieres, “Nature and Thermal Evolution of Amorphous Hydrated Zirconium Oxide”, J. Am. Ceram. Soc., 51, 349, 1968.
33. Tani E., M. Yoshimura, and S. Somiya, “Formation of Ultrafine Tetragonal ZrO2 Powder Under Hydrated Zirconium Oxide”, J. Am. Ceram. Soc., 66, 11, 1983.
34. Osendi M. I., J. S. Moya, C. J. Serna, and J. soria, “Metastability of Tetragonal Zirconia Powders”, J. Am. Ceram. Soc., 68, 135, 1985.
35. Cipollini N. E., “Emulsion-Char Method for Making Fine Powder”, U.S. Patent No 4,654,075, March 31, 1987.
36. Ross S. D., G. H. Maher, and C. E. Hutchins, “Emulsion-Char Method for Making Fine Ceramic Powder”, U.S. Patent No. 4,749,664, June 7, 1988.
37. Lin C. P., S. B. Wen, and T. T. Lee, “Preparation of Nanometer Sized α-Alumina Powders by Calcining an Emulsion of Boehmite and Oleic Acid”, J. Am. Ceram. Soc., 85, 1, 2002.
38. Lin C. P., S. B. Wen, “Variation of Boehmite and Oleic Acid Emulsion in the Calcining Process of Alumina Powders”, J. Am. Ceram. Soc., Accepted for publication, 2002.
39. 吳同峰, “奈米氧化鋯粉體之製作與分析”, 碩士論文, 國立台灣大學化工所, 2000.
40. 李玫樺, “以逆乳膠沈澱技術控制氧化鋯微粉之粒徑與形態”, 博士論文, 國立台灣大學化學工程所, 2000.
41. 趙承琛, 界面科學基礎, 復文書局, 1985.
42. 卓靜哲, 何瑞文, 黃守仁, 施良垣, 蘇世剛, 物理化學, 三民書局, 1994.
43. Warren L. J., in Principles of Mineral Flotation., Australasian Institute of Mining and Metallurgy, 1984.
44. Robort J. P., and Lennart Bergström, “Surface and Colloid Chemistry in Advanced Ceramics Processing”, Copyright by MARCEL DEKKER, Inc., 1994.
45. Shanefield D. J., Organic Additives and Ceramic Processing, Kluwer Academic Publishers, 1995.
46. Yoshikiyo Moroi, Micelles Theoretical and Applied Aspects, chapter1~4, Plenum Press New York, 1992.
47. 張有義, 郭蘭生編譯, 膠體及界面化學入門, 高立圖書有限公司, 1999.
48. 許樹恩, 吳泰伯, X光繞射原理與材料結構分析, 中國材料科學學會, 1996.
49. 尹邦躍, 納米時代—實現與夢想, 中國輕工業出版社, 2001.
50. Wakai F., S. Sakaguchi and Y. Matsuno, “Superplasticity of Yttria-Stabilized Tetragonal ZrO2 Polycrystals”, Adv. Ceram. Mater., 1, 259, 1986.