| 研究生: |
黃奕瑄 Huang, Yi-Xuan |
|---|---|
| 論文名稱: |
可壓縮橢圓凹槽流研究 Investigation of elliptical cavity in compressible flow |
| 指導教授: |
張克勤
Chang, Keh-Chin 鍾光民 Chung, Kung-Ming |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 424 |
| 中文關鍵詞: | 可壓縮流 、橢圓形凹槽流 、自我維持震盪 |
| 外文關鍵詞: | compressible flow, elliptical cavity,, self-sustained oscillations |
| ORCID: | 0009-0004-5830-7854 |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究透過數值模擬與實驗方法,探討可壓縮流場中橢圓形凹槽的內部流動結構、流動轉變以及側壁曲率所引發的三維效應。研究中所分析的自由流馬赫數分別為0.83、0.70和0.64,凹槽的偏心率則設定為0.87、0.66和0.47,長深比(L/H)則涵蓋2.10至21.50的範圍。
根據實驗與數值模擬的結果,橢圓形凹槽流場可區分為開放型(open cavity)、過渡型(transitional cavity)以及封閉型(closed cavity)三種流動,取決於凹槽的幾何結構。表面壓力分布顯示,當L/H達到約8.60時,流場明顯從開放型轉變為過渡型;而當L/H超過14.33時,流場則轉變為封閉型。這樣的轉換趨勢與圓形凹槽的文獻結果一致。油流實驗也證實了此流動的轉變,在L/H為8.60時,凹槽內的反向流(reversed flow)的分離線消失,並於14.33時剪切層(shear layer)明顯附著於凹槽底部。數值模擬馬赫數為0.83時,隨著L/H的增加,凹槽內的渦流(recirculation vortex)受到壓迫,其核心逐漸前移且尺寸縮小。模擬也明確呈現了渦流顯著的變形行為:在較低L/H時,渦流主要沿著橫向方向旋轉;隨著長深比的增加,渦流逐漸轉向垂直方向旋轉,凸顯出因側壁曲率所誘導的三維效應增強。在偏心率影響方面,研究結果顯示較低偏心率(即較寬的凹槽)顯著增強了凹槽內部流動的三維性。在長深比2.10且偏心率為0.87時,流動結構接近二維,呈現出明確的前渦流、渦流和後渦流。然而,隨著偏心率降低(凹槽變寬),前半部的流場逐漸出現類龍捲風渦流(tornado-like vortex),這種結構強化了由曲面側壁驅動的橫向運動,隨著長深比進一步提高,這類龍捲風渦流成為流場中的主導結構,並促使流場逐漸轉為封閉型流態。頻譜分析結果則指出,在L/H為2.10的開放型凹槽流場中存在明顯的Rossiter模態(Rossiter modes)。但隨著長深比的增加,前面三個Rossiter模態的振幅逐漸減弱,這主要歸因於剪切層與迴流之間交互作用遭到抑制所致。當流場轉變為封閉型時,模擬結果指出剪切層直接附著於凹槽底部,進一步破壞了流場中的回饋迴路(feedback loop),使得自持震盪 (self-sustained oscillations)逐漸消失。偏心率的改變雖然對Rossiter模態的震盪頻率與振幅影響不大,但較高的偏心率卻顯著增強了凹槽內的橫向運動,使原本集中的Rossiter模態能量重新分配至寬頻雜訊中。
This numerical and experimental study investigates the internal flow structures, flow regime transitions, and three-dimensional effects induced by curved sidewalls in compressible elliptical cavity flows. The analyses cover freestream Mach numbers of 0.83, 0.70, and 0.64; the cavity eccentricities of 0.87, 0.66, and 0.47; and cavity length-to-depth (L/H) ratios ranging from 2.10-21.50. Pressure-sensitive paint, oil flow visualization, and dynamic pressure sensors were used in the experimental analysis.
Elliptical cavity flows are categorized into three regimes: open, transitional, and closed cavity flows. The type of cavity flow is primarily influenced by the cavity geometry. Surface pressure measurements conducted in this study indicated that a distinct transition from an open flow to a transitional flow occurred at L/H = 8.60. Moreover, a transition from a transitional flow to a closed flow occurred for L/H > 14.33. As the cavity’s L/H ratio increased, the recirculation vortex shifted forward and became progressively constrained to a smaller area, with its size decreasing because of shear layer compression. Furthermore, this vortex underwent considerable deformation, transitioning from exhibiting a primarily spanwise-aligned rotation for L/H ≤ 4.43 to an almost vertical rotation orientation at L/H = 14.33.
Spectral analysis indicated the existence of distinct Rossiter modes within open cavity flows when the L/H = 2.10. These Rossiter modes diminished with an increase in the L/H because of the suppression of the interactions between the shear layer and recirculation vortices. Simulation results revealed that in transitional and closed cavity regimes, attachment of the shear layer to the cavity floor disrupted the feedback loop, effectively eliminating self-sustained oscillations. Although eccentricity variations had minimal effects on the oscillation frequency, increased eccentricity notably enhanced spanwise fluid motion, redistributing spectral energy from discrete Rossiter tones into a broader frequency range.
Overall, this study provides detailed insights into flow regime transitions and three-dimensional effect for compressible flows in elliptical cavities, thus considerably enhancing the understanding of cavity flows and their implications for aerodynamic design and flow control applications.
[1] Ahuja, K. K., & Mendoza, J. (1995). Effects of cavity dimensions, boundary layer, and temperature on cavity noise with emphasis on benchmark data to validate computational aeroacoustic codes (No. NAS 1.26: 4653).
[2] Atvars, K., Knowles, K., Ritchie, S. A., & Lawson, N. J. (2009). Experimental and computational investigation of an ‘open’transonic cavity flow. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 223(4), 357-368.
[3] Bacci, D., Saddington, A. J., & Bray, D. (2018). Identification of the formation of resonant tones in compressible cavity flows. Aerospace Science and Technology, 77, 320-331.
[4] Bartel, H. W., & McAvoy, J. M. (1981). Cavity oscillation in cruise missile carrier aircraft. Flight Dynamics Laboratory, Air Force Wright Aeronautical Laboratories, Air Force Systems Command, United States Air Force.
[5] Blake, W. K., & Powell, A. (1986, August). The development of contemporary views of flow-tone generation. In Recent Advances in Aeroacoustics: Proceedings of an International Symposium held at Stanford University, August 22–26, 1983 (pp. 247-325). New York, NY: Springer New York.
[6] Block, P. J. (1976). Noise response of cavities of varying dimensions at subsonic speeds (No. L-11045).
[7] Brown, G. B. (1937). The vortex motion causing edge tones. Proceedings of the Physical Society, 49(5), 493.
[8] Cattafesta, III, L., Garg, S., Kegerise, M., & Jones, G. (1998). Experiments on compressible flow-induced cavity oscillations. In 29th AIAA, Fluid Dynamics Conference (p. 2912).
[9] Chang, W. C. (2023). An experimental study on compressible backward-facing step flow with micro vortex generators [Master’s thesis, National Cheng Kung University].
[10] Chappell, P. D. (2005). Aerodynamics and aero-acoustics of rectangular planform caviites Part II: Unsteady flow and aero-acoustics. London, ESDU International plc, 2005. 111.
[11] Charwat, A. F., Dewey Jr, C. F., Roos, J. N., & Hitz, J. A. (1961b). An investigation of separated flows-part II: flow in the cavity and heat transfer. Journal of the Aerospace Sciences, 28(7), 513-527.
[12] Charwat, A. F., Roos, J. N., Dewey Jr, F. C., & Hitz, J. A. (1961a). An investigation of separated flows-Part I: The pressure field. Journal of the Aerospace Sciences, 28(6), 457-470.
[13] Chen, L., Asai, K., Nonomura, T., Xi, G., & Liu, T. (2018). A review of Backward-Facing Step (BFS) flow mechanisms, heat transfer and control. Thermal Science and Engineering Progress, 6, 194-216.
[14] Chicheportiche, J., & Gloerfelt, X. (2010). Direct noise computation of the flow over cylindrical cavities. In 16th AIAA/CEAS Aeroacoustics Conference (p. 3775).
[15] Chicheportiche, J., & Gloerfelt, X. (2011). Effect of a turbulent incoming boundary layer on noise radiation by the flow over cylindrical cavities. In 17th AIAA/CEAS Aeroacoustics Conference (32nd AIAA Aeroacoustics Conference) (p. 2862).
[16] Chung, K. (2003). Characteristics of compressible rectangular cavity flows. Journal of aircraft, 40(1), 137-142.
[17] Chung, K. M. (2001). Three-dimensional effect on transonic rectangular cavity flows. Experiments in Fluids, 30(5), 531-536.
[18] Chung, K. M. (2000). Characteristics of transonic rectangular cavity flows. Journal of Aircraft, 37(3), 463-468.
[19] Chung, K. M. (2002). Investigation on transonic convex-corner flows. Journal of Aircraft, 39(6), 1014-1018.
[20] Chung, K. M., Huang, Y. X., Kuan-Huang, L. E. E., & Chang, K. C. (2020). Reynolds number effect on compressible cylindrical cavity flow. Chinese Journal of Aeronautics, 33(2), 456-464.
[21] Chung, K. M., Lee, K. H., & Chang, K. C. (2017). Characteristics of cylindrical cavities in a compressible turbulent flow. Aerospace Science and Technology, 66, 160-164.
[22] Chung, K. M., & LU, F. (1990, June). Shock-tube calibration of a fast-response pressure transducer. In 16th Aerodynamic Ground Testing Conference (p. 1399).
[23] Colonius, T., Basu, A. J., & Rowley, C. W. (1999, July). Computation of sound generation and flow/acoustic instabilities in the flow past an open cavity. In 3rd ASME/JSME Joint Fluids Engineering Conference. Proceedings of the Joint Fluids Engineering Conference.
[24] Corcos, G. M. (1963). Resolution of pressure in turbulence. The Journal of the Acoustical Society of America, 35(2), 192-199.
[25] Crook, S. D., Lau, T. C., & Kelso, R. M. (2013). Three-dimensional flow within shallow, narrow cavities. Journal of Fluid Mechanics, 735, 587-612.
[26] Czech, M., Savory, E., Toy, N., & Mavrides, T. (2001). Flow regimes associated with yawed rectangular cavities. The Aeronautical Journal, 105(1045), 125-134.
[27] Dix, R. E., & Butler, C. (1990). Cavity aeroacoustics (Vol. 90, No. 8). Air Force Armament Laboratory, Aerodynamics Branch, Air Force Systems Command, United States Air Force.
[28] Dolling, D. S., Perng, S. W., & Leu, Y. L. (1998). An experimental study of passive control of hypersonic cavity flow oscillations. Air Force Office of Scientific Research, Aerospace Sciences.
[29] Dybenko, J., & Savory, E. (2008). An experimental investigation of turbulent boundary layer flow over surface-mounted circular cavities. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 222(1), 109-125.
[30] Elder, S. A., Farabee, T. M., & DeMetz, F. C. (1982). Mechanisms of flow‐excited cavity tones at low Mach number. The Journal of the Acoustical Society of America, 72(2), 532-549.
[31] Esteve, M. J., Reulet, P., & Millan, P. (2000, July). Flow field characterisation within a rectangular cavity. In 10th International Symposium Applications of Laser Techniques to Fluid Mechanics.
[32] Forestier, N., Jacquin, L., & Geffroy, P. (2003). The mixing layer over a deep cavity at high-subsonic speed. Journal of Fluid Mechanics, 475, 101-145.
[33] Franke, M., & Carr, D. (1975, March). Effect of geometry on open cavity flow-induced pressure oscillations. In 2nd Aeroacoustics Conference (p. 492).
[34] Friesing, H. (1936). Measurement of the drag associated with recessed surfaces: cut-outs of rectangular and elliptical planform. Royal Aircraft Establishment, Farnborough, UK.
[35] Garg, S., & Cattafesta Iii, L. N. (2001). Quantitative schlieren measurements of coherent structures in a cavity shear layer. Experiments in fluids, 30(2), 123-134.
[36] Gaudet, L. (1973). Measurements of the drag of some characteristic aircraft excrescences immersed in turbulent boundary layers. No. 124 on Aerodynamic Drag.
[37] Gharib, M. (1987). Response of the cavity shear layer oscillations to external forcing. AIAA journal, 25(1), 43-47.
[38] Gharib, M., & Roshko, A. (1987). The effect of flow oscillations on cavity drag. Journal of Fluid Mechanics, 177, 501-530.
[39] Gharib, M. (1983). The effect of flow oscillations on cavity drag, and a technique for their control. California Institute of Technology.
[40] Gloerfelt, X. (2009). Cavity noise. VKI lecture series, 3.
[41] Gloerfelt, X., Bogey, C., & Bailly, C. (2003). Numerical evidence of mode switching in the flow-induced oscillations by a cavity. International Journal of Aeroacoustics, 2(2), 193-217.
[42] Guo, G., Luo, Q., & Wu, J. (2023). On aerodynamic characteristics of rarefied hypersonic flows over variable eccentricity elliptical cavities. Aerospace Science and Technology, 134, 108160.
[43] Haigermoser, C. A. H. K., Scarano, F., & Onorato, M. (2009). Investigation of the flow in a circular cavity using stereo and tomographic particle image velocimetry. Experiments in fluids, 46, 517-526.
[44] Hankey, W. L., & Shang, J. S. (1980). Analyses of pressure oscillations in an open cavity. AIAA journal, 18(8), 892-898.
[45] Heller, H., & Bliss, D. (1975a). The physical mechanism of flow-induced pressure fluctuations in cavities and concepts for their suppression. In 2nd Aeroacoustics conference (p. 491).
[46] Heller, H. H., Holmes, D. G., & Covert, E. E. (1971). Flow-induced pressure oscillations in shallow cavities. Journal of sound and Vibration, 18(4), 545-553.
[47] Heller, H. H., & Bliss, D. B. (1975b). Aerodynamically induced pressure oscillations in cavities. Physical Mechanisms and Suppression Concepts, Defense Technical Information Center, Air Force Flight Dynamics Lab. AFFDL-TR-74-133.
[48] Hering, T., & Savory, E. (2007). Flow regimes and drag characteristics of yawed elliptical cavities with varying depth.
[49] Hiwada, M., Kawamura, T., MABUCHI, I., & KUMADA, M. (1983). Some characteristics of flow pattern and heat transfer past a circular cylindrical cavity. Bulletin of JSME, 26(220), 1744-1752.
[50] Huang, Y. X., & Chung, K. M. (2023). Mode Switching in a Compressible Rectangular Cavity Flow. Aerospace, 10(6), 504.
[51] Huang, Y. X., & Chung, K. M. (2024). Global Surface Pressure Pattern for a Compressible Elliptical Cavity Flow Using Pressure-Sensitive Paint. Aero
[52] Illy, H. (2005). Contrôle de l'écoulement au-dessus d'une cavité en régime transsonique (Doctoral dissertation, Ecully, Ecole centrale de Lyon).
[53] Kang, W., Lee, S. B., & Sung, H. J. (2008). Self-sustained oscillations of turbulent flows over an open cavity. Experiments in fluids, 45, 693-702.
[54] Karamcheti, K. (1955). Acoustic radiation from two-dimensional rectangular cutouts in aerodynamic surfaces. National Advisory Committee for Aeronautics.
[55] Karamcheti, K. (1956). Sound radiation from surface cutouts in high speed flow (Doctoral dissertation, California Institute of Technology).
[56] Kegerise, M. A., Spina, E. F., Garg, S., & Cattafesta III, L. N. (2004b). Mode-switching and nonlinear effects in compressible flow over a cavity. Physics of Fluids, 16(3), 678-687.
[57] Kegerise, M., Cabell, R., & Cattafesta, L. (2004a). Real-time adaptive control of flow-induced cavity tones. In 42nd AIAA Aerospace Sciences Meeting and Exhibit (p. 572).
[58] Kegerise, M., Spina, E., & Cattafesta, III, L. (1999). An experimental investigation of flow-induced cavity oscillations. In 30th Fluid Dynamics Conference (p. 3705).
[59] Kerschen, E., & Tumin, A. (2003). A theoretical model of cavity acoustic resonances based on edge scattering processes. In 41st Aerospace Sciences Meeting and Exhibit (p. 175).
[60] Khadivi, T., & Savory, E. (2013). Experimental and numerical study of flow structures associated with low aspect ratio elliptical cavities. Journal of fluids engineering, 135(4), 041104.
[61] Khadivi, T., & Savory, E. (2017). Effect of yaw angle on the flow structure of low aspect ratio elliptical cavities. Journal of Aerospace Engineering, 30(4), 04017002.
[62] Kistler, A. L., & Tan, F. C. (1967). Some properties of turbulent separated flows. The Physics of Fluids, 10(9), S165-S173.
[63] Kline, S. J., & McClintock, F. A. (1953). Describing uncertainties in single-sample experiments. Mechanical Engineering, 75, 3–8.
[64] Knowles, K., Ritchie, S., & Lawson, N. (2007, June). An experimental and computational investigation of a 3D, L/H= 5 transonic cavity flow. In 3rd International Symposium on Integrating CFD and Experiments in Aerodynamics. US Air Force Academy.
[65] Koenig, K., & Roshko, A. (1985). An experimental study of geometrical effects on the drag and flow field of two bluff bodies separated by a gap. Journal of fluid mechanics, 156, 167-204.
[66] Larchevêque, L., Sagaut, P., Mary, I., Labbé, O., & Comte, P. (2003). Large-eddy simulation of a compressible flow past a deep cavity. Physics of fluids, 15(1), 193-210.
[67] Larchevêque, L., Sagaut, P., & Labbé, O. (2007). Large-eddy simulation of a subsonic cavity flow including asymmetric three-dimensional effects. Journal of Fluid Mechanics, 577, 105-126.
[68] Lawson, S. J., & Barakos, G. N. (2011). Review of numerical simulations for high-speed, turbulent cavity flows. Progress in Aerospace Sciences, 47(3), 186-216.
[69] Lee, K. H. (2016). An experimental study on compressible cavity flows [Doctoral dissertation, National Cheng Kung University].
[70] Liu, T., Campbell, B. T., Burns, S. P., & Sullivan, J. P. (1997). Temperature-and pressure-sensitive luminescent paints in aerodynamics. Applied mechanics reviews, 50, 227-246.
[71] Liu, T., Guille, M., & Sullivan, J. P. (2001). Accuracy of pressure-sensitive paint. AIAA journal, 39(1), 103-112.
[72] Malone, J., Debiasi, M., Little, J., & Samimy, M. (2009). Analysis of the spectral relationships of cavity tones in subsonic resonant cavity flows. Physics of Fluids, 21(5).
[73] Manovski, P., Giacobello, M., & Soria, J. (2007). Particle image velocimetry measurements over an aerodynamically open two-dimensional cavity.
[74] Marsden, O., Bogey, C., & Bailly, C. (2012). Investigation of flow features around shallow round cavities subject to subsonic grazing flow. Physics of Fluids, 24(12).
[75] Maull, D. J., & East, L. F. (1963). Three-dimensional flow in cavities. journal of Fluid Mechanics, 16(4), 620-632.
[76] McCarthy, P. W., & Ekmekci, A. (2022). Flow features of shallow cylindrical cavities subject to grazing flow. Physics of Fluids, 34(2).
[77] Meissner, M. (2014). Experimental investigation of discrete sound production in deep cavity exposed to airflow. Archives of Acoustics, 18(1), 131-156.
[78] Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA journal, 32(8), 1598-1605.
[79] Menter, F. (1993, July). Zonal two equation kw turbulence models for aerodynamic flows. In 23rd fluid dynamics, plasmadynamics, and lasers conference (p. 2906).
[80] Miau, J., Cheng, J., Chung, K. M., & Chou, J. (1998, October). The effect of surface roughness on the boundary layer transition. In Proceeding of the 7th International Symposium in Flow Modeling and Turbulent Measurement (pp. 609-616).
[81] Milbank, J. (2004). Investigation of fluid-dynamic cavity oscillations and the effects of flow angle in an automotive context using an open-jet wind tunnel (Doctoral dissertation, RMIT University).
[82] Mincu, D., Mary, I., Manoha, E., Larchevêque, L., & Redonnet, S. (2009). Numerical simulations of the sound generation by flow over surface mounted cylindrical cavities including wind tunnel installation effects. In 15th AIAA/CEAS Aeroacoustics Conference (30th AIAA Aeroacoustics Conference) (p. 3314).
[83] Mohri, K., & Hillier, R. (2011). Computational and experimental study of supersonic flow over axisymmetric cavities. Shock Waves, 21(3), 175-191.
[84] Murray, R. C., & Elliott, G. S. (2001). Characteristics of the compressible shear layer over a cavity. AIAA journal, 39(5), 846-856.
[85] Özsoy, E., Rambaud, P., Stitou, A., & Riethmuller, M. L. (2005). Vortex characteristics in laminar cavity flow at very low Mach number. Experiments in fluids, 38, 133-145.
[86] Pandian, S., Desikan, S. L. N., & Niranjan, S. (2020). Nonlinear characteristics of a rectangular cavity in supersonic flow. AIAA Journal, 58(3), 1206-1215.
[87] Parthasarathy, S. P., Cho, Y. I., & Back, L. H. (1984, October). Aerodynamic sound generation induced by flow over small, cylindricalcavities. In 9th Aeroacoustics Conference (p. 2258).
[88] Parthasarathy, S. P., Cho, Y. I., & Back, L. H. (1985). Sound generation by flow over relatively deep cylindrical cavities. The Journal of the Acoustical Society of America, 78(5), 1785-1795.
[89] Pey, Y. Y. (2014). Analysis of flow structures in cavity flow with modifications to cavity geometry (Doctoral dissertation).
[90] Plentovich, E. B., Stallings Jr, R. L., & Tracy, M. B. (1993). Experimental cavity pressure measurements at subsonic and transonic speeds. Static-pressure results (No. L-17157).
[91] Plumblee, H. E., Gibson, J. S., & Lassiter, L. W. (1962). A theoretical and experimental investigation of the acoustic response of cavities in an aerodynamic flow (Vol. 61). Flight Dynamics Laboratory, Aeronautical Systems Division, Air Force Systems Command, US Air Force.
[92] Powell, A. (1961). On the edgetone. The Journal of the Acoustical Society of America, 33(4), 395-409.
[93] Rockwell, D., & Knisely, C. (1979). The organized nature of flow impingement upon a corner. Journal of Fluid Mechanics, 93(3), 413-432.
[94] Rockwell, D., & Knisely, C. (1980). Observations of the three‐dimensional nature of unstable flow past a cavity. The Physics of Fluids, 23(3), 425-431.
[95] Rockwell, D., & Naudascher, E. (1979). Self-sustained oscillations of impinging free shear layers. Annual Review of Fluid Mechanics, 11, 67-94.
[96] Rockwell, D., & Naudascher, E. (1978). Self-sustaining oscillations of flow past cavities.
[97] Rockwell, D. (1983). Oscillations of impinging shear layers. AIAA journal, 21(5), 645-664.
[98] Rockwell, D. (1998). Vortex-body interactions. Annual review of fluid mechanics, 30(1), 199-229.
[99] Roshko, A. (1955). Some measurements of flow in a rectangular cutout (No. NACA-TN-3488).
[100] Rossiter, J. (1960). A preliminary investigation into armament bay buffet at subsonic and transonic speeds. Royal Aircraft Establishment, TM AERO, 679..
[101] Rossiter, J. E. (1962). The effects of cavities on the buffeting of aircraft. RAE Technical Memorandum No. Aero 754.
[102] Rossiter, J. E. (1964). Wind-tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds.
[103] Rowley, C. W., Colonius, T., & Basu, A. J. (2002). On self-sustained oscillations in two-dimensional compressible flow over rectangular cavities. Journal of Fluid Mechanics, 455, 315-346.
[104] Sarohia, V. (1977). Experimental investigation of oscillations in flows over shallow cavities. Aiaa Journal, 15(7), 984-991.
[105] Schmit, R. F., Grove, J. E., Semmelmayer, F., & Haverkamp, M. (2014). Nonlinear feedback mechanisms inside a rectangular cavity. AIAA Journal, 52(10), 2127-2142.
[106] Smith, C. O. H., Lawson, N., & Vio, G. A. (2024). History, review and summary of the cavity flow phenomena. European Journal of Mechanics-B/Fluids.
[107] Sondhaus, C. (1854). Ueber die beim ausstromen der luft entstehenden tone. Ann. Phys.(Leipzig), 91, 214-240.
[108] Stallings Jr, R. L., Plentovich, E. B., Tracy, M. B., & Hemsch, M. J. (1995). Measurements of store forces and moments and cavity pressures for a generic store in and near a box cavity at subsonic and transonic speeds (No. NASA-TM-4611).
[109] Stallings Jr, R. L., & Wilcox Jr, F. J. (1987). Experimental cavity pressure distributions at supersonic speeds (No. L-16215).
[110] Stallings, R. L. (1994). Effect of passive venting on static pressure distributions in cavities at subsonic and transonic speeds (Vol. 4549). National Aeronautics and Space Administration, Langley Research Center.
[111] Stephens, D. B., Verdugo, F. R., & Bennett, G. J. (2014). Shear layer driven acoustic modes in a cylindrical cavity. Journal of Pressure Vessel Technology, 136(5), 051309.
[112] Strouhal, V. (1878). Über eine besondere Art der Tonerregung. Stahel.
[113] Su, K. C. (2022). Vortex generators on transonic convex-corner flows [Doctoral dissertation, National Cheng Kung University].
[114] Sun, Y., Taira, K., Cattafesta III, L. N., & Ukeiley, L. S. (2017). Biglobal instabilities of compressible open-cavity flows. Journal of Fluid Mechanics, 826, 270-301.
[115] Tam, C. J., Orkwis, P. D., & Disimile, P. J. (1996). Algebraic turbulence model simulations of supersonic open-cavity flow physics. AIAA journal, 34(11), 2255-2260.
[116] Tang, Y. P., & Rockwell, D. (1983). Instantaneous pressure fields at a corner associated with vortex impingement. Journal of Fluid Mechanics, 126, 187-204.
[117] Thangamani, V. (2019). Mode behavior in supersonic cavity flows. AIAA Journal, 57(8), 3410-3421.
[118] Tillmann, W. (1951). Additional measurements of the drag of surface irregularities in turbulent boundary layers (No. 1299). National Advisory Commitee for Aeronautics.
[119] Torrence, C., & Compo, G. P. (1998). A practical guide to wavelet analysis. Bulletin of the American Meteorological society, 79(1), 61-78.
[120] Tracy, M. B. (1997). Cavity unsteady-pressure measurements at subsonic and transonic speeds (Vol. 3669). NASA, Langley Research Center.
[121] Unalmis, O. H., Clemens, N. T., & Dolling, D. S. (2004). Cavity oscillation mechanisms in high-speed flows. AIAA journal, 42(10), 2035-2041.
[122] Vakili, A. D., & Gauthier, C. (1994). Control of cavity flow by upstream mass-injection. Journal of Aircraft, 31(1), 169-174.
[123] Verdugo, F. R., Guitton, A., & Camussi, R. (2012). Experimental investigation of a cylindrical cavity in a low Mach number flow. Journal of Fluids and Structures, 28, 1-19.
[124] Wagner, J., Beresh, S. J., Casper, K. M., Pruett, B. O. M., Spillers, R. W., & Henfling, J. F. (2013). Experimental Investigation of Aspect-Ratio Effects in Transonic and Subsonic Rectangular Cavity Flow (No. SAND2013-10639C). Sandia National Lab.(SNL-NM), Albuquerque, NM (United States).
[125] Wagner, J. L., Beresh, S. J., Casper, K. M., DeMauro, E. P., & Arunajatesan, S. (2017). Resonance dynamics in compressible cavity flows using time-resolved velocity and surface pressure fields. Journal of Fluid Mechanics, 830, 494-527.
[126] Wagner, J. L., Beresh, S. J., Casper, K. M., DeMauro, E. P., Lynch, K. P., Spillers, R., ... & Spitzer, S. (2018). Effects of cavity width on resonance dynamics using planform time-resolved particle image velocimetry. In 2018 AIAA Aerospace Sciences Meeting (p. 0359).
[127] Wang, J., Ma, T., Wang, Z., Wang, R., Song, H., Yuan, W., & Zheng, H. (2022). Three-dimensional flow structures and heat transfer characteristics of compressible flow over a cylindrical cavity. Aerospace Science and Technology, 122, 107408.
[128] Wieghardt, K. (1946). Increase of the turbulent frictional resistance caused by surface irregularities. MAP R & T, 103.
[129] Wilcox Jr, F. J. (1990). Experimental investigation of porous-floor effects on cavity flow fields at supersonic speeds (No. NAS 1.60: 3032).
[130] Wilcox Jr, F. J. (1992, September). Use of a Colored Water Surface Flow Visualization Technique in a Supersonic Wind Tunnel to Investigate Cavity Flow Fields. In Flow Visualization VI: Proceedings of the Sixth International Symposium on Flow Visualization, October 5–9, 1992, Yokohama, Japan (pp. 41-45). Berlin, Heidelberg: Springer Berlin Heidelberg.
[131] Williams, D. R., Cornelius, D., & Rowley, C. W. (2007). Supersonic cavity response to open-loop forcing. In Active Flow Control: Papers contributed to the Conference “Active Flow Control 2006”, Berlin, Germany, September 27 to 29, 2006 (pp. 230-243). Springer Berlin Heidelberg.
[132] Ziada, S., & Rockwell, D. (1982). Oscillations of an unstable mixing layer impinging upon an edge. Journal of fluid mechanics, 124, 307-334.
校內:2026-08-04公開