簡易檢索 / 詳目顯示

研究生: 許詠晴
Hsu, Yung-Ching
論文名稱: 由景觀生態學觀點討論都市熱島現象與土地使用之關係
Relationships between Urban Heat Island Phenomenon and Urban Land Use: From the Aspect of Landscape Ecology.
指導教授: 林漢良
Lin, Han-Liang
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 都市計劃學系
Department of Urban Planning
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 101
中文關鍵詞: 景觀生態學都市熱島土地使用分區
外文關鍵詞: Landscape Ecology, Urban Heat Island, Urban Land-use
相關次數: 點閱:166下載:53
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 都市熱島的成因包括物理環境因素和人為活動因素兩類。土地使用分區計畫(Zoning)是都市規劃的重要工具,在規劃的概念裡,土地使用分區計畫具有功能分區的特性:規劃者利用土地使用分區計畫引導活動在特定地區發生、形成具有功能性的都市結構,土地使用分區管制則控制了土地覆蓋類別、容許使用項目及建物量體規模等熱島成因下的物理環境與人為活動變數。景觀生態學是一門系統性討論景觀紋理、景觀功能性及其中生態過程的理論;景觀紋理對映的是都市熱島成因中的物理環境因素,紋理是由都市結構、建築量體的排列、水與綠分布所組成的空間結構,影響風的流動以及環境的物理特性;景觀功能及其中的生態過程對映的是都市熱島成因中的人為活動因素,都市中的人為活動包括住居、商貿、生產製造等等,所衍生的交通與能源使用行為會產生直接釋熱,是都市的重要熱源;景觀紋理會影響其功能性及其內部生態生成,而景觀生態及功能又會回頭影響景觀紋理的形塑,因而形成熱的產生、吸收、儲存、釋放的系統性循環。因此,藉由景觀生態學觀點探討土地使用分區與環境溫度的關係可同時納入物理環境與人為活動兩大影響環境溫度的變數、以及都市計畫形塑都市功能分區的規劃意義,系統性地討論都市活動如何影響環境溫度。
    奠基於景觀生態學觀點,研究假設熱島現象與土地使用之關係隨都市景觀類型而異,將都市分為兩層級探討:全域(整體)與局部(住居、商業、工業),以台南市為實證地區,使用LANDSAT 8衛星於2019/02/03 凌晨02:26所拍攝的紅外線衛星影像資料反演地表溫度。實證成果顯示,在全域都市景觀尺度下,景觀紋理與地表溫度之關係無法被線性迴歸模型良好解釋,但在進行局部都市景觀分析時,三種不同都市景觀間呈現出明顯的地表溫度與景觀紋理差異,印證了熱島現象與土地使用之關係隨都市景觀類型而異的研究假設;另外,台南市夜間熱島主要出現於工業景觀,而縮小街廓尺度、增加土地使用多樣性及提升街廓邊緣的複雜性,或將有助於減緩工業景觀的高溫現象。

    Physical environment and human activities are the major factors affecting urban thermal environment, while urban heat island is the most prevalent object that related research focuses on. The major factors affecting urban thermal environment can be systematically discussed through the theory of Landscape Ecology. From the perspective of Landscape Ecology, research assuming that the relationships between heat island phenomenon and land-use varies within types of urban landscape. Research defines the urban landscape in two levels: global (the whole city as an integrated urban landscape) and local (which includes residential, commercial, and industrial landscape).
    Results show that the relationships between land surface temperature and global urban landscape can’t be well explained with linear regression model, however, the landscape metrics and land surface temperature statistics show the relationships varies within types of urban landscape. In addition, Tainan City’s heat island phenomenon mainly happen on the industrial landscape, while reducing block size, increasing the diversity of land-use types and the complexity of block edges may mitigate heat island phenomenon.

    第一章 緒論-1 第一節、研究背景-1 第二節、研究假設與目的-3 第三節、研究範圍-3 一、 資料範圍-3 二、 時間範圍-4 三、 都市計畫範圍-5 四、 研究地區選定-5 第四節、研究流程-6 第二章 文獻回顧-8 第一節、都市熱島的成因、現象與影響-8 一、 環境熱的生成機制及其影響層面-8 二、 都市熱島之成因與現象-9 三、 應用遙測技術之都市熱島研究-12 四、 臺南市熱島研究-13 五、 都市發展與環境溫度-16 第二節、景觀生態學於熱島研究之應用-17 一、 景觀生態學-17 二、 應用景觀生態指數探討土地使用與環境熱之關係-23 第三章 研究設計與方法-27 第一節、研究設計與資料整備-27 一、 研究設定-27 二、 研究設計-29 第二節、研究方法-35 一、 空間自相關分析-35 二、 FRAGSTATS景觀紋理分析-38 三、 統計分析方法-43 第四章 實證分析-45 第一節、熱島地區判釋-45 一、 研究範圍地表溫度分布-45 二、 以熱島強度值定義熱島之都市熱島分佈-48 三、 以地表溫度熱區定義熱島之都市熱島分佈-49 第二節、全域都市景觀紋理與地表溫度之關係-55 一、 顯著的地表溫度群聚-55 二、 HH群集面積資料分布型態-58 三、 HH群集平均地表溫度之資料分布型態-59 四、 以多元線性迴歸檢視全域景觀紋理與平均地表溫度之關係-66 第三節、局部都市景觀紋理與地表溫度之關係-83 一、 局部都市景觀取樣區位與範圍-83 二、 局部都市景觀之地表溫度表現-83 三、 局部都市景觀之景觀紋理-84 第五章、結論-89 第一節、研究成果-89 一、 研究範圍之都市熱島分布-89 二、 不同層級之都市景觀紋理與地表溫度之關係-91 第二節、研究成果與都市政策之連結-92 第三節、後續研究建議-94 一、 針對單一時間斷面的觀測結果造成的解釋偏誤-94 二、 針對研究範圍地理條件造成的特殊環境熱-95 三、 針對土地使用計畫與現況之落差-95 四、 針對可調整地區單元問題-95 五、 針對景觀指數及統計方法之選擇-96 參考文獻-97

    1. Alberti, M. (1999). Urban patterns and environmental performance: What do we know? Journal of Planning Education and Research, 19(2), 151-163. doi:10.1177/0739456X9901900205
    2. Alonso, L., & Renard, F. (2020). A New Approach for Understanding Urban Microclimate by Integrating Complementary Predictors at Different Scales in Regression and Machine Learning Models. Remote Sensing, 12(15), 35. doi:10.3390/rs12152434
    3. Aram, F., Higueras García, E., Solgi, E., & Mansournia, S. (2019). Urban green space cooling effect in cities. Heliyon, 5(4), e01339. doi:https://doi.org/10.1016/j.heliyon.2019.e01339
    4. Betts, R. A. (2001). Biogeophysical impacts of land use on present-day climate: near-surface temperature change and radiative forcing. Atmospheric Science Letters, 2(1), 39-51. doi:https://doi.org/10.1006/asle.2001.0023
    5. Bowler, D. E., Buyung-Ali, L., Knight, T. M., & Pullin, A. S. (2010). Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landscape and Urban Planning, 97(3), 147-155. doi:https://doi.org/10.1016/j.landurbplan.2010.05.006
    6. Buyantuyev, A., & Wu, J. (2010). Urban heat islands and landscape heterogeneity: linking spatiotemporal variations in surface temperatures to land-cover and socioeconomic patterns. Landscape Ecology, 25(1), 17-33. doi:10.1007/s10980-009-9402-4
    7. Cao, Q., Liu, Y., Georgescu, M., & Wu, J. (2020). Impacts of landscape changes on local and regional climate: a systematic review. Landscape Ecology, 35(6), 1269-1290. doi:10.1007/s10980-020-01015-7
    8. Chapman, S., Watson, J. E. M., Salazar, A., Thatcher, M., & McAlpine, C. A. (2017). The impact of urbanization and climate change on urban temperatures: a systematic review. Landscape Ecology, 32(10), 1921-1935. doi:10.1007/s10980-017-0561-4
    9. Chen, A., Yao, L., Sun, R., & Chen, L. (2014). How many metrics are required to identify the effects of the landscape pattern on land surface temperature? Ecological Indicators, 45, 424-433. doi:https://doi.org/10.1016/j.ecolind.2014.05.002
    10. Chen, X. L., Zhao, H. M., Li, P. X., & Yin, Z. Y. (2006). Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sensing of Environment, 104(2), 133-146. doi:10.1016/j.rse.2005.11.016
    11. Connors, J. P., Galletti, C. S., & Chow, W. T. L. (2013). Landscape configuration and urban heat island effects: assessing the relationship between landscape characteristics and land surface temperature in Phoenix, Arizona. Landscape Ecology, 28(2), 271-283. doi:10.1007/s10980-012-9833-1
    12. Deng, C., & Wu, C. (2013). Examining the impacts of urban biophysical compositions on surface urban heat island: A spectral unmixing and thermal mixing approach. Remote Sensing of Environment, 131, 262-274. doi:https://doi.org/10.1016/j.rse.2012.12.020
    13. Estoque, R. C., Murayama, Y., & Myint, S. W. (2017). Effects of landscape composition and pattern on land surface temperature: An urban heat island study in the megacities of Southeast Asia. Science of The Total Environment, 577, 349-359. doi:https://doi.org/10.1016/j.scitotenv.2016.10.195
    14. Feng, L., Zhao, M., Zhou, Y., Zhu, L., & Tian, H. (2020). The seasonal and annual impacts of landscape patterns on the urban thermal comfort using Landsat. Ecological Indicators, 110. doi:10.1016/j.ecolind.2019.105798
    15. Feng, Y., Du, S., Myint, S. W., & Shu, M. (2019). Do urban functional zones affect land surface temperature differently? A case study of Beijing, China. Remote Sensing, 11(15), 1802.
    16. Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., . . . Snyder, P. K. (2005). Global Consequences of Land Use. Science, 309(5734), 570. doi:10.1126/science.1111772
    17. Forman, R. T. T. (1995). Some general principles of landscape and regional ecology. Landscape Ecology, 10(3), 133-142. doi:10.1007/BF00133027
    18. Forman, R. T. T., & Godron, M. (1986). Landscape Ecology: Wiley.
    19. Fu, P., & Weng, Q. H. (2016). A time series analysis of urbanization induced land. use and land cover change and its impact on land surface temperature with Landsat imagery. Remote Sensing of Environment, 175, 205-214. doi:10.1016/j.rse.2015.12.040
    20. Gage, E. A., & Cooper, D. J. (2017). Relationships between landscape pattern metrics, vertical structure and surface urban Heat Island formation in a Colorado suburb. Urban Ecosystems, 20(6), 1229-1238. doi:10.1007/s11252-017-0675-0
    21. Gago, E. J., Roldan, J., Pacheco-Torres, R., & Ordonez, J. (2013). The city and urban heat islands: A review of strategies to mitigate adverse effects. Renewable & Sustainable Energy Reviews, 25, 749-758. doi:10.1016/j.rser.2013.05.057
    22. Getis, A., & Ord, J. K. (1992). The Analysis of Spatial Association by Use of Distance Statistics. Geographical analysis, 24(3), 189-206. doi:https://doi.org/10.1111/j.1538-4632.1992.tb00261.x
    23. Grimm, N. B., Faeth, S. H., Golubiewski, N. E., Redman, C. L., Wu, J., Bai, X., & Briggs, J. M. (2008). Global Change and the Ecology of Cities. Science, 319(5864), 756. doi:10.1126/science.1150195
    24. Guo, L., Liu, R., Men, C., Wang, Q., Miao, Y., & Zhang, Y. (2019). Quantifying and simulating landscape composition and pattern impacts on land surface temperature: A decadal study of the rapidly urbanizing city of Beijing, China. Science of The Total Environment, 654, 430-440. doi:https://doi.org/10.1016/j.scitotenv.2018.11.108
    25. Hart, M. A., & Sailor, D. J. (2009). Quantifying the influence of land-use and surface characteristics on spatial variability in the urban heat island. Theoretical and Applied Climatology, 95(3), 397-406. doi:10.1007/s00704-008-0017-5
    26. IPCC. (2019). IPCC Special Report on Climate Change and Land: JSTOR.
    27. Kim, J. I., Jun, M. J., Yeo, C. H., Kwon, K. H., & Hyun, J. Y. (2019). The Effects of Land Use Zoning and Densification on Changes in Land Surface Temperature in Seoul. Sustainability, 11(24), 14. doi:10.3390/su11247056
    28. Landsberg, H. E. (1981). The urban climate: Academic press.
    29. Li, X., Li, W., Middel, A., Harlan, S. L., Brazel, A. J., & Turner, B. L. (2016). Remote sensing of the surface urban heat island and land architecture in Phoenix, Arizona: Combined effects of land composition and configuration and cadastral–demographic–economic factors. Remote Sensing of Environment, 174, 233-243. doi:https://doi.org/10.1016/j.rse.2015.12.022
    30. Li, X., Zhou, W., Ouyang, Z., Xu, W., & Zheng, H. (2012). Spatial pattern of greenspace affects land surface temperature: Evidence from the heavily urbanized Beijing metropolitan area, China. Landscape Ecology, 27(6), 887-898. doi:10.1007/s10980-012-9731-6
    31. Liu, H., & Weng, Q. H. (2008). Seasonal variations in the relationship between landscape pattern and land surface temperature in Indianapolis, USA. Environmental Monitoring and Assessment, 144(1-3), 199-219. doi:10.1007/s10661-007-9979-5
    32. Liu, Y., Peng, J., & Wang, Y. (2018). Efficiency of landscape metrics characterizing urban land surface temperature. Landscape and Urban Planning, 180, 36-53. doi:https://doi.org/10.1016/j.landurbplan.2018.08.006
    33. Marcus, L., Pont, M. B., & Barthel, S. (2019). Towards a socio-ecological spatial morphology: integrating elements of urban morphology and landscape ecology. Urban Morphology, 23(2), 115-124. Retrieved from <Go to ISI>://WOS:000484768100002
    34. Masek, J. G., Wulder, M. A., Markham, B., McCorkel, J., Crawford, C. J., Storey, J., & Jenstrom, D. T. (2020). Landsat 9: Empowering open science and applications through continuity. Remote Sensing of Environment, 248, 111968. doi:https://doi.org/10.1016/j.rse.2020.111968
    35. McGarigal, K., & Marks, B. J. (1995). Spatial pattern analysis program for quantifying landscape structure. Gen. Tech. Rep. PNW-GTR-351. US Department of Agriculture, Forest Service, Pacific Northwest Research Station, 1-122.
    36. Nichol, J. E. (1996). High-resolution surface temperature patterns related to urban morphology in a tropical city: A satellite-based study. Journal of Applied Meteorology, 35(1), 135-146. doi:10.1175/1520-0450(1996)035<0135:Hrstpr>2.0.Co;2
    37. Oke, T. R. (1987). Boundary Layer Climates: Routledge.
    38. Pielke, R. A. (2005). Land Use and Climate Change. Science, 310(5754), 1625. doi:10.1126/science.1120529
    39. Rajasekar, U., & Weng, Q. H. (2009). Application of Association Rule Mining for Exploring the Relationship between Urban Land Surface Temperature and Biophysical/Social Parameters. Photogrammetric Engineering and Remote Sensing, 75(4), 385-396. doi:10.14358/pers.75.4.385
    40. Reddy, S. N., & Manikiam, B. (2017). Land surface temperature retrieval from LANDSAT data using emissivity estimation. International Journal of Applied Engineering Research, 12(20), 9679-9687.
    41. Risser, P. G. (1987). Landscape ecology: state of the art. In Landscape heterogeneity and disturbance (pp. 3-14): Springer.
    42. Rosenfeld, A. H., Akbari, H., Romm, J. J., & Pomerantz, M. (1998). Cool communities: Strategies for heat island mitigation and smog reduction. Energy and Buildings, 28(1), 51-62. doi:10.1016/S0378-7788(97)00063-7
    43. Sun, X., Tan, X., Chen, K., Song, S., Zhu, X., & Hou, D. (2020). Quantifying landscape-metrics impacts on urban green-spaces and water-bodies cooling effect: The study of Nanjing, China. Urban Forestry & Urban Greening, 55, 126838. doi:https://doi.org/10.1016/j.ufug.2020.126838
    44. Sun, Y. W., Gao, C., Li, J. L., Wang, R., & Liu, J. (2019). Quantifying the Effects of Urban Form on Land Surface Temperature in Subtropical High-Density Urban Areas Using Machine Learning. Remote Sensing, 11(8), 18. doi:10.3390/rs11080959
    45. Taleghani, M. (2018). Outdoor thermal comfort by different heat mitigation strategies- A review. Renewable and Sustainable Energy Reviews, 81, 2011-2018. doi:https://doi.org/10.1016/j.rser.2017.06.010
    46. Tan, W., Xu, J., & Yue, W. (2005). Analysis of mechanism for formation of urban thermal environment. Paper presented at the Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS'05.
    47. Tran, D. X., Pla, F., Latorre-Carmona, P., Myint, S. W., Caetano, M., & Kieu, H. V. (2017). Characterizing the relationship between land use land cover change and land surface temperature. ISPRS Journal of Photogrammetry and Remote Sensing, 124, 119-132. doi:https://doi.org/10.1016/j.isprsjprs.2017.01.001
    48. Turner, M. G. (1989). Landscape Ecology: The Effect of Pattern on Process. Annual Review of Ecology and Systematics, 20(1), 171-197. doi:10.1146/annurev.es.20.110189.001131
    49. Turner, M. G., Gardner, R. H., O'neill, R. V., & O'Neill, R. V. (2015). Landscape ecology in theory and practice (Second Edition ed. Vol. 401): Springer.
    50. U.S. Geological Survey, U. (2016). LANDSAT 8 (L8) Data Users Handbook, Version 2.0.
    51. Wu, J. (2013). Key concepts and research topics in landscape ecology revisited: 30 years after the Allerton Park workshop. Landscape Ecology, 28(1), 1-11. doi:10.1007/s10980-012-9836-y
    52. Xie, M., Chen, J., Zhang, Q., Li, H., Fu, M., & Breuste, J. (2020). Dominant landscape indicators and their dominant areas influencing urban thermal environment based on structural equation model. Ecological Indicators, 111, 105992. doi:https://doi.org/10.1016/j.ecolind.2019.105992
    53. Yao, L., Xu, Y., & Zhang, B. (2019). Effect of urban function and landscape structure on the urban heat island phenomenon in Beijing, China. Landscape and Ecological Engineering, 15(4), 379-390.
    54. Yuan, F., & Bauer, M. E. (2007). Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sensing of Environment, 106(3), 375-386. doi:10.1016/j.rse.2006.09.003
    55. Zhou, W., Huang, G., & Cadenasso, M. L. (2011). Does spatial configuration matter? Understanding the effects of land cover pattern on land surface temperature in urban landscapes. Landscape and Urban Planning, 102(1), 54-63.
    56. Živković, J. (2020). Urban Form and Function. Climate Action, 862-871.
    57. 鄭師中. (1988). 都市氣候學: 徐氏基金會.
    58. 李魁鵬, 林憲德, 林立人, 郭曉青, & 陳子謙. (1999). 臺灣四大都會區都市熱島效應實測解析 (2)--夏季都市熱島時空分佈特性之初步解析. 建築學報, 31, 75-90.
    59. 林憲德, 李魁鵬, 陳冠廷, 林立人, 郭曉青, & 陳子謙. (1999). 臺灣四大都會區都市熱島效應實測解析 (1)--國內外都市熱島強度之比較. 建築學報, 31, 51-73.
    60. 林憲德, 郭曉青, 李魁鵬, 陳子謙, & 陳冠廷. (2001). 台灣海岸型城市之都市熱島現象與改善對策解析一以台南、高雄及新竹為例. [Experimental Analyses on Urban Heat Island Effect and Its Improvement Strategies in Coastal Cities of Taiwan--Analyses for Tainan, Kaoshoung and Hsinchu]. 都市與計劃, 28(3), 323-341. Retrieved from https://www.AiritiLibrary.com/Publication/Index/10181067-200112-28-3-323-341-a.
    61. 鄔建國. (2003). 景觀生態學:格局過程尺度與等級: 五南圖書出版
    62. 林憲德, 孫振義, 李魁鵬, & 郭曉青. (2005). 台南地區都市規模與都市熱島強度之研究. 都市與計劃, 32(1), 83-97.
    63. 孫振義. (2008). 運用遙測技術於都市熱島效應之研究. (博士). 國立成功大學, 台南市. Retrieved from https://hdl.handle.net/11296/cq8b26
    64. 孫振義, 林憲德, 呂罡銘, 劉正千, & 陳瑞鈴. (2010). 台南市地表溫度與地表覆蓋關係之研究. [Relationship between Surface Temperature and Land-cover in Tainan City]. 都市與計劃, 37(3), 369-391. doi:10.6128/cp.37.3.369
    65. 石婉瑜, & Leslie, M. (2018). 臺北盆地的熱環境特徵與都市綠色基盤的影響. [Thermal Environments of Taipei Basin and Influence from Urban Green Infrastructure]. 都市與計劃, 45(4), 283-300. doi:10.6128/CP.201812_45(4).0002

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE