| 研究生: |
許詠晴 Hsu, Yung-Ching |
|---|---|
| 論文名稱: |
由景觀生態學觀點討論都市熱島現象與土地使用之關係 Relationships between Urban Heat Island Phenomenon and Urban Land Use: From the Aspect of Landscape Ecology. |
| 指導教授: |
林漢良
Lin, Han-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 都市計劃學系 Department of Urban Planning |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 景觀生態學 、都市熱島 、土地使用分區 |
| 外文關鍵詞: | Landscape Ecology, Urban Heat Island, Urban Land-use |
| 相關次數: | 點閱:166 下載:53 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
都市熱島的成因包括物理環境因素和人為活動因素兩類。土地使用分區計畫(Zoning)是都市規劃的重要工具,在規劃的概念裡,土地使用分區計畫具有功能分區的特性:規劃者利用土地使用分區計畫引導活動在特定地區發生、形成具有功能性的都市結構,土地使用分區管制則控制了土地覆蓋類別、容許使用項目及建物量體規模等熱島成因下的物理環境與人為活動變數。景觀生態學是一門系統性討論景觀紋理、景觀功能性及其中生態過程的理論;景觀紋理對映的是都市熱島成因中的物理環境因素,紋理是由都市結構、建築量體的排列、水與綠分布所組成的空間結構,影響風的流動以及環境的物理特性;景觀功能及其中的生態過程對映的是都市熱島成因中的人為活動因素,都市中的人為活動包括住居、商貿、生產製造等等,所衍生的交通與能源使用行為會產生直接釋熱,是都市的重要熱源;景觀紋理會影響其功能性及其內部生態生成,而景觀生態及功能又會回頭影響景觀紋理的形塑,因而形成熱的產生、吸收、儲存、釋放的系統性循環。因此,藉由景觀生態學觀點探討土地使用分區與環境溫度的關係可同時納入物理環境與人為活動兩大影響環境溫度的變數、以及都市計畫形塑都市功能分區的規劃意義,系統性地討論都市活動如何影響環境溫度。
奠基於景觀生態學觀點,研究假設熱島現象與土地使用之關係隨都市景觀類型而異,將都市分為兩層級探討:全域(整體)與局部(住居、商業、工業),以台南市為實證地區,使用LANDSAT 8衛星於2019/02/03 凌晨02:26所拍攝的紅外線衛星影像資料反演地表溫度。實證成果顯示,在全域都市景觀尺度下,景觀紋理與地表溫度之關係無法被線性迴歸模型良好解釋,但在進行局部都市景觀分析時,三種不同都市景觀間呈現出明顯的地表溫度與景觀紋理差異,印證了熱島現象與土地使用之關係隨都市景觀類型而異的研究假設;另外,台南市夜間熱島主要出現於工業景觀,而縮小街廓尺度、增加土地使用多樣性及提升街廓邊緣的複雜性,或將有助於減緩工業景觀的高溫現象。
Physical environment and human activities are the major factors affecting urban thermal environment, while urban heat island is the most prevalent object that related research focuses on. The major factors affecting urban thermal environment can be systematically discussed through the theory of Landscape Ecology. From the perspective of Landscape Ecology, research assuming that the relationships between heat island phenomenon and land-use varies within types of urban landscape. Research defines the urban landscape in two levels: global (the whole city as an integrated urban landscape) and local (which includes residential, commercial, and industrial landscape).
Results show that the relationships between land surface temperature and global urban landscape can’t be well explained with linear regression model, however, the landscape metrics and land surface temperature statistics show the relationships varies within types of urban landscape. In addition, Tainan City’s heat island phenomenon mainly happen on the industrial landscape, while reducing block size, increasing the diversity of land-use types and the complexity of block edges may mitigate heat island phenomenon.
1. Alberti, M. (1999). Urban patterns and environmental performance: What do we know? Journal of Planning Education and Research, 19(2), 151-163. doi:10.1177/0739456X9901900205
2. Alonso, L., & Renard, F. (2020). A New Approach for Understanding Urban Microclimate by Integrating Complementary Predictors at Different Scales in Regression and Machine Learning Models. Remote Sensing, 12(15), 35. doi:10.3390/rs12152434
3. Aram, F., Higueras García, E., Solgi, E., & Mansournia, S. (2019). Urban green space cooling effect in cities. Heliyon, 5(4), e01339. doi:https://doi.org/10.1016/j.heliyon.2019.e01339
4. Betts, R. A. (2001). Biogeophysical impacts of land use on present-day climate: near-surface temperature change and radiative forcing. Atmospheric Science Letters, 2(1), 39-51. doi:https://doi.org/10.1006/asle.2001.0023
5. Bowler, D. E., Buyung-Ali, L., Knight, T. M., & Pullin, A. S. (2010). Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landscape and Urban Planning, 97(3), 147-155. doi:https://doi.org/10.1016/j.landurbplan.2010.05.006
6. Buyantuyev, A., & Wu, J. (2010). Urban heat islands and landscape heterogeneity: linking spatiotemporal variations in surface temperatures to land-cover and socioeconomic patterns. Landscape Ecology, 25(1), 17-33. doi:10.1007/s10980-009-9402-4
7. Cao, Q., Liu, Y., Georgescu, M., & Wu, J. (2020). Impacts of landscape changes on local and regional climate: a systematic review. Landscape Ecology, 35(6), 1269-1290. doi:10.1007/s10980-020-01015-7
8. Chapman, S., Watson, J. E. M., Salazar, A., Thatcher, M., & McAlpine, C. A. (2017). The impact of urbanization and climate change on urban temperatures: a systematic review. Landscape Ecology, 32(10), 1921-1935. doi:10.1007/s10980-017-0561-4
9. Chen, A., Yao, L., Sun, R., & Chen, L. (2014). How many metrics are required to identify the effects of the landscape pattern on land surface temperature? Ecological Indicators, 45, 424-433. doi:https://doi.org/10.1016/j.ecolind.2014.05.002
10. Chen, X. L., Zhao, H. M., Li, P. X., & Yin, Z. Y. (2006). Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sensing of Environment, 104(2), 133-146. doi:10.1016/j.rse.2005.11.016
11. Connors, J. P., Galletti, C. S., & Chow, W. T. L. (2013). Landscape configuration and urban heat island effects: assessing the relationship between landscape characteristics and land surface temperature in Phoenix, Arizona. Landscape Ecology, 28(2), 271-283. doi:10.1007/s10980-012-9833-1
12. Deng, C., & Wu, C. (2013). Examining the impacts of urban biophysical compositions on surface urban heat island: A spectral unmixing and thermal mixing approach. Remote Sensing of Environment, 131, 262-274. doi:https://doi.org/10.1016/j.rse.2012.12.020
13. Estoque, R. C., Murayama, Y., & Myint, S. W. (2017). Effects of landscape composition and pattern on land surface temperature: An urban heat island study in the megacities of Southeast Asia. Science of The Total Environment, 577, 349-359. doi:https://doi.org/10.1016/j.scitotenv.2016.10.195
14. Feng, L., Zhao, M., Zhou, Y., Zhu, L., & Tian, H. (2020). The seasonal and annual impacts of landscape patterns on the urban thermal comfort using Landsat. Ecological Indicators, 110. doi:10.1016/j.ecolind.2019.105798
15. Feng, Y., Du, S., Myint, S. W., & Shu, M. (2019). Do urban functional zones affect land surface temperature differently? A case study of Beijing, China. Remote Sensing, 11(15), 1802.
16. Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., . . . Snyder, P. K. (2005). Global Consequences of Land Use. Science, 309(5734), 570. doi:10.1126/science.1111772
17. Forman, R. T. T. (1995). Some general principles of landscape and regional ecology. Landscape Ecology, 10(3), 133-142. doi:10.1007/BF00133027
18. Forman, R. T. T., & Godron, M. (1986). Landscape Ecology: Wiley.
19. Fu, P., & Weng, Q. H. (2016). A time series analysis of urbanization induced land. use and land cover change and its impact on land surface temperature with Landsat imagery. Remote Sensing of Environment, 175, 205-214. doi:10.1016/j.rse.2015.12.040
20. Gage, E. A., & Cooper, D. J. (2017). Relationships between landscape pattern metrics, vertical structure and surface urban Heat Island formation in a Colorado suburb. Urban Ecosystems, 20(6), 1229-1238. doi:10.1007/s11252-017-0675-0
21. Gago, E. J., Roldan, J., Pacheco-Torres, R., & Ordonez, J. (2013). The city and urban heat islands: A review of strategies to mitigate adverse effects. Renewable & Sustainable Energy Reviews, 25, 749-758. doi:10.1016/j.rser.2013.05.057
22. Getis, A., & Ord, J. K. (1992). The Analysis of Spatial Association by Use of Distance Statistics. Geographical analysis, 24(3), 189-206. doi:https://doi.org/10.1111/j.1538-4632.1992.tb00261.x
23. Grimm, N. B., Faeth, S. H., Golubiewski, N. E., Redman, C. L., Wu, J., Bai, X., & Briggs, J. M. (2008). Global Change and the Ecology of Cities. Science, 319(5864), 756. doi:10.1126/science.1150195
24. Guo, L., Liu, R., Men, C., Wang, Q., Miao, Y., & Zhang, Y. (2019). Quantifying and simulating landscape composition and pattern impacts on land surface temperature: A decadal study of the rapidly urbanizing city of Beijing, China. Science of The Total Environment, 654, 430-440. doi:https://doi.org/10.1016/j.scitotenv.2018.11.108
25. Hart, M. A., & Sailor, D. J. (2009). Quantifying the influence of land-use and surface characteristics on spatial variability in the urban heat island. Theoretical and Applied Climatology, 95(3), 397-406. doi:10.1007/s00704-008-0017-5
26. IPCC. (2019). IPCC Special Report on Climate Change and Land: JSTOR.
27. Kim, J. I., Jun, M. J., Yeo, C. H., Kwon, K. H., & Hyun, J. Y. (2019). The Effects of Land Use Zoning and Densification on Changes in Land Surface Temperature in Seoul. Sustainability, 11(24), 14. doi:10.3390/su11247056
28. Landsberg, H. E. (1981). The urban climate: Academic press.
29. Li, X., Li, W., Middel, A., Harlan, S. L., Brazel, A. J., & Turner, B. L. (2016). Remote sensing of the surface urban heat island and land architecture in Phoenix, Arizona: Combined effects of land composition and configuration and cadastral–demographic–economic factors. Remote Sensing of Environment, 174, 233-243. doi:https://doi.org/10.1016/j.rse.2015.12.022
30. Li, X., Zhou, W., Ouyang, Z., Xu, W., & Zheng, H. (2012). Spatial pattern of greenspace affects land surface temperature: Evidence from the heavily urbanized Beijing metropolitan area, China. Landscape Ecology, 27(6), 887-898. doi:10.1007/s10980-012-9731-6
31. Liu, H., & Weng, Q. H. (2008). Seasonal variations in the relationship between landscape pattern and land surface temperature in Indianapolis, USA. Environmental Monitoring and Assessment, 144(1-3), 199-219. doi:10.1007/s10661-007-9979-5
32. Liu, Y., Peng, J., & Wang, Y. (2018). Efficiency of landscape metrics characterizing urban land surface temperature. Landscape and Urban Planning, 180, 36-53. doi:https://doi.org/10.1016/j.landurbplan.2018.08.006
33. Marcus, L., Pont, M. B., & Barthel, S. (2019). Towards a socio-ecological spatial morphology: integrating elements of urban morphology and landscape ecology. Urban Morphology, 23(2), 115-124. Retrieved from <Go to ISI>://WOS:000484768100002
34. Masek, J. G., Wulder, M. A., Markham, B., McCorkel, J., Crawford, C. J., Storey, J., & Jenstrom, D. T. (2020). Landsat 9: Empowering open science and applications through continuity. Remote Sensing of Environment, 248, 111968. doi:https://doi.org/10.1016/j.rse.2020.111968
35. McGarigal, K., & Marks, B. J. (1995). Spatial pattern analysis program for quantifying landscape structure. Gen. Tech. Rep. PNW-GTR-351. US Department of Agriculture, Forest Service, Pacific Northwest Research Station, 1-122.
36. Nichol, J. E. (1996). High-resolution surface temperature patterns related to urban morphology in a tropical city: A satellite-based study. Journal of Applied Meteorology, 35(1), 135-146. doi:10.1175/1520-0450(1996)035<0135:Hrstpr>2.0.Co;2
37. Oke, T. R. (1987). Boundary Layer Climates: Routledge.
38. Pielke, R. A. (2005). Land Use and Climate Change. Science, 310(5754), 1625. doi:10.1126/science.1120529
39. Rajasekar, U., & Weng, Q. H. (2009). Application of Association Rule Mining for Exploring the Relationship between Urban Land Surface Temperature and Biophysical/Social Parameters. Photogrammetric Engineering and Remote Sensing, 75(4), 385-396. doi:10.14358/pers.75.4.385
40. Reddy, S. N., & Manikiam, B. (2017). Land surface temperature retrieval from LANDSAT data using emissivity estimation. International Journal of Applied Engineering Research, 12(20), 9679-9687.
41. Risser, P. G. (1987). Landscape ecology: state of the art. In Landscape heterogeneity and disturbance (pp. 3-14): Springer.
42. Rosenfeld, A. H., Akbari, H., Romm, J. J., & Pomerantz, M. (1998). Cool communities: Strategies for heat island mitigation and smog reduction. Energy and Buildings, 28(1), 51-62. doi:10.1016/S0378-7788(97)00063-7
43. Sun, X., Tan, X., Chen, K., Song, S., Zhu, X., & Hou, D. (2020). Quantifying landscape-metrics impacts on urban green-spaces and water-bodies cooling effect: The study of Nanjing, China. Urban Forestry & Urban Greening, 55, 126838. doi:https://doi.org/10.1016/j.ufug.2020.126838
44. Sun, Y. W., Gao, C., Li, J. L., Wang, R., & Liu, J. (2019). Quantifying the Effects of Urban Form on Land Surface Temperature in Subtropical High-Density Urban Areas Using Machine Learning. Remote Sensing, 11(8), 18. doi:10.3390/rs11080959
45. Taleghani, M. (2018). Outdoor thermal comfort by different heat mitigation strategies- A review. Renewable and Sustainable Energy Reviews, 81, 2011-2018. doi:https://doi.org/10.1016/j.rser.2017.06.010
46. Tan, W., Xu, J., & Yue, W. (2005). Analysis of mechanism for formation of urban thermal environment. Paper presented at the Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS'05.
47. Tran, D. X., Pla, F., Latorre-Carmona, P., Myint, S. W., Caetano, M., & Kieu, H. V. (2017). Characterizing the relationship between land use land cover change and land surface temperature. ISPRS Journal of Photogrammetry and Remote Sensing, 124, 119-132. doi:https://doi.org/10.1016/j.isprsjprs.2017.01.001
48. Turner, M. G. (1989). Landscape Ecology: The Effect of Pattern on Process. Annual Review of Ecology and Systematics, 20(1), 171-197. doi:10.1146/annurev.es.20.110189.001131
49. Turner, M. G., Gardner, R. H., O'neill, R. V., & O'Neill, R. V. (2015). Landscape ecology in theory and practice (Second Edition ed. Vol. 401): Springer.
50. U.S. Geological Survey, U. (2016). LANDSAT 8 (L8) Data Users Handbook, Version 2.0.
51. Wu, J. (2013). Key concepts and research topics in landscape ecology revisited: 30 years after the Allerton Park workshop. Landscape Ecology, 28(1), 1-11. doi:10.1007/s10980-012-9836-y
52. Xie, M., Chen, J., Zhang, Q., Li, H., Fu, M., & Breuste, J. (2020). Dominant landscape indicators and their dominant areas influencing urban thermal environment based on structural equation model. Ecological Indicators, 111, 105992. doi:https://doi.org/10.1016/j.ecolind.2019.105992
53. Yao, L., Xu, Y., & Zhang, B. (2019). Effect of urban function and landscape structure on the urban heat island phenomenon in Beijing, China. Landscape and Ecological Engineering, 15(4), 379-390.
54. Yuan, F., & Bauer, M. E. (2007). Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sensing of Environment, 106(3), 375-386. doi:10.1016/j.rse.2006.09.003
55. Zhou, W., Huang, G., & Cadenasso, M. L. (2011). Does spatial configuration matter? Understanding the effects of land cover pattern on land surface temperature in urban landscapes. Landscape and Urban Planning, 102(1), 54-63.
56. Živković, J. (2020). Urban Form and Function. Climate Action, 862-871.
57. 鄭師中. (1988). 都市氣候學: 徐氏基金會.
58. 李魁鵬, 林憲德, 林立人, 郭曉青, & 陳子謙. (1999). 臺灣四大都會區都市熱島效應實測解析 (2)--夏季都市熱島時空分佈特性之初步解析. 建築學報, 31, 75-90.
59. 林憲德, 李魁鵬, 陳冠廷, 林立人, 郭曉青, & 陳子謙. (1999). 臺灣四大都會區都市熱島效應實測解析 (1)--國內外都市熱島強度之比較. 建築學報, 31, 51-73.
60. 林憲德, 郭曉青, 李魁鵬, 陳子謙, & 陳冠廷. (2001). 台灣海岸型城市之都市熱島現象與改善對策解析一以台南、高雄及新竹為例. [Experimental Analyses on Urban Heat Island Effect and Its Improvement Strategies in Coastal Cities of Taiwan--Analyses for Tainan, Kaoshoung and Hsinchu]. 都市與計劃, 28(3), 323-341. Retrieved from https://www.AiritiLibrary.com/Publication/Index/10181067-200112-28-3-323-341-a.
61. 鄔建國. (2003). 景觀生態學:格局過程尺度與等級: 五南圖書出版
62. 林憲德, 孫振義, 李魁鵬, & 郭曉青. (2005). 台南地區都市規模與都市熱島強度之研究. 都市與計劃, 32(1), 83-97.
63. 孫振義. (2008). 運用遙測技術於都市熱島效應之研究. (博士). 國立成功大學, 台南市. Retrieved from https://hdl.handle.net/11296/cq8b26
64. 孫振義, 林憲德, 呂罡銘, 劉正千, & 陳瑞鈴. (2010). 台南市地表溫度與地表覆蓋關係之研究. [Relationship between Surface Temperature and Land-cover in Tainan City]. 都市與計劃, 37(3), 369-391. doi:10.6128/cp.37.3.369
65. 石婉瑜, & Leslie, M. (2018). 臺北盆地的熱環境特徵與都市綠色基盤的影響. [Thermal Environments of Taipei Basin and Influence from Urban Green Infrastructure]. 都市與計劃, 45(4), 283-300. doi:10.6128/CP.201812_45(4).0002