| 研究生: |
蔡宗祐 Tasi, Tzung-You |
|---|---|
| 論文名稱: |
高溫質子交換膜燃料電池用之含醚基聚苯咪唑/二氧化矽奈米複合材料合成與性質之研究 Synthesis and properties of ether-containing polybenzimidazole/silica nanocomposites for high-temperature proton exchange membrane fuel cells |
| 指導教授: |
許聯崇
Hsu, Lien-Chung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 質子交換膜 、聚苯咪唑 、燃料電池 、奈米複合材料 |
| 外文關鍵詞: | proton exchange membrane, polybenzimidazole, fuel cell, nanocomposite |
| 相關次數: | 點閱:94 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究利用4-fluorobenzoic acid及3, 3’-diaminobenzidine合成出含有苯咪唑(benzimidazole)之二氟單體,並進一步將此單體與resorcinol利用芳香族親核性取代聚合反應合成出含有醚基之聚苯咪唑(Polybenzimidazole,PBI),此PBI可溶於一般有機溶劑中,在摻雜磷酸之後於高溫下可以獲得不錯的導電度。此外,再利用3,5-difluoroaniline與前兩種單體合成出含胺基的PBI之共聚物。將含胺基PBI之共聚物與silica前驅物tetraethyl orthosilicate(TEOS)混摻,其中並添加bonding agent,經由溶膠-凝膠法(sol-gel)製備PBI/silica奈米複合材薄膜。Bonding agent的添加可強化有機高分子與無機物之間的交互作用力。由穿透式電子顯微鏡(TEM)分析可看出奈米silica粒子均勻分散在高分子基材中。此PBI/silica奈米複合材料的熱性質、機械性質與氧化穩定性皆能藉由奈米silica的添加而改善。摻雜磷酸後的PBI/silica奈米複合材薄膜其導電率略低於酸化後的純PBI薄膜。
In this study, a benzimidazole-contaning monomer was synthesized from 4-fluorobenzoic acid and 3, 3’-diaminobenzidine.And then, A ether- containing polybenzimidazole(PBI) was synthesized from the monomer and resorcinol via aromatic nucleophilic substitution polymerization. The ether-containing PBI is organosoluble, and have good conductivity at high temperature after doping acid. Furthermore, An amino-containing PBI copolymer was synthesized by the reaction of 3,5-difluoroaniline, resorcinol and the benzimidazole-contaning monomer. PBI/silica nanocomposite membranes were prepared via sol-gel process from the amino-containing PBI copolymer with tetraethyl orthosilicate (TEOS) precursor and a bonding agent. The introduction of the bonding agent results in the reinforcing interfacial interaction between PBI chains and silica nanoparticles. Transmission electron microscopy(TEM) analyses showed that the silica particles were well dispersed in the PBI matrix on a nanometer scale. The thermal properties, the oxidative stability and the mechanical properties of the PBI films were improved by the addition of silica. The conductivities of the pure acid-doped PBI/silica nanocomposites were slightly lower than the acid-doped pure PBI.
1. J. T. Wang, J. S. Wainright, R. F. Savinell, and M. Litt, "A direct methanol fuel cell using acid-doped polybenzimidazole as polymer electrolyte," Journal of Applied Electrochemistry, V. 26, No. 7, p. 751, 1996.
2. G. Inzelt, M. Pineri, J. W. Schultze, and M. A. Vorotyntsev, "Electron and proton conducting polymers: recent developments and prospects," Electrochimica Acta, V. 45, No. 15–16, p. 2403, 2000.
3. M. Rikukawa, and K. Sanui, "Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers," Progress in Polymer Science, V. 25, No. 10, p. 1463, 2000.
4. D. H. Jung, S. Y. Cho, D. H. Peck, D. R. Shin, and J. S. Kim, "Preparation and performance of a Nafion®/montmorillonite nanocomposite membrane for direct methanol fuel cell," Journal of Power Sources, V. 118, No. 1–2, p. 205, 2003.
5. V. V. Binsu, R. K. Nagarale, and V. K. Shahi, "Phosphonic acid functionalized aminopropyl triethoxysilane-PVA composite material: organic-inorganic hybrid proton-exchange membranes in aqueous media," Journal of Materials Chemistry, V. 15, No. 45, p. 4823, 2005.
6. 衣寶廉, "燃料電池-應用與原理," 五南圖書出版社, 2005.
7. K. Janowitz, M. Kah, and H. Wendt, "Molten carbonate fuel cell research: Part I. Comparing cathodic oxygen reduction in lithium/potassium and lithium/sodium carbonate melts," Electrochimica Acta, V. 45, No. 7, p. 1025, 1999.
8. X. H. Wang, Y. Chen, H. G. Pan, R. G. Xu, S. Q. Li, L. X. Chen, C. P. Chen, and Q. D. Wang, "Electrochemical properties of Ml(NiCoMnCu)5 used as an alkaline fuel cell anode," Journal of Alloys and Compounds, V. 293–295, No. 0, p. 833, 1999.
9. S. Dheenadayalan, R. H. Song, and D. R. Shin, "Characterization and performance analysis of silicon carbide electrolyte matrix of phosphoric acid fuel cell prepared by ball-milling method," Journal of Power Sources, V. 107, No. 1, p. 98, 2002.
10. S. F. Corbin, and X. Qiao, "Development of Solid Oxide Fuel Cell Anodes Using Metal-Coated Pore-Forming Agents," Journal of the American Ceramic Society, V. 86, No. 3, p. 401, 2003.
11. Q. Li, J. O. Jensen, R. F. Savinell, and N. J. Bjerrum, "High temperature proton exchange membranes based on polybenzimidazoles for fuel cells," Progress in Polymer Science, V. 34, No. 5, p. 449, 2009.
12. 林昇佃等著, "燃料電池:新世紀能源," 滄海書局, 2006.
13. 馬承九, "燃料電池札記," 三民書局, 2008.
14. B. Smitha, S. Sridhar, and A. A. Khan, "Solid polymer electrolyte membranes for fuel cell applications—a review," Journal of Membrane Science, V. 259, No. 1–2, p. 10, 2005.
15. Z. Ogumi, T. Kuroe, and Z. I. Takehara, "Gas permeation in SPE method II. Oxygen and hydrogen permeation through Nafion," Journal of The Electrochemical Society, V. 132, No. 11, p. 2601, 1985.
16. R. F. Hutzler, D. L. Meurer, K. Kimura, and P. E. Cassidy, "Synthesis and Characterization of Polybenzazoles Containing Hexafluoroisopropylidene," High Performance Polymers, V. 4, No. 3, p. 161, 1992.
17. H. Vogel, and C. Marvel, "Polybenzimidazoles, new thermally stable polymers," Journal of Polymer Science, V. 50, No. 154, p. 511, 1961.
18. V. V. Korshak, G. V. Kazakova, and A. L. Rusanov, "Catalytic methods of synthesizing polybenzazoles. Review," Polymer Science USSR, V. 31, No. 1, p. 4, 1989.
19. E. W. Choe, "Catalysts for the preparation of polybenzimidazoles," Journal of Applied Polymer Science, V. 53, No. 5, p. 497, 1994.
20. Y. Iwakura, K. Uno, and Y. Imai, "Polyphenylenebenzimidazoles," Journal of Polymer Science Part A: General Papers, V. 2, No. 6, p. 2605, 1964.
21. P. E. Eaton, G. R. Carlson, and J. T. Lee, "Phosphorus pentoxide-methanesulfonic acid. Convenient alternative to polyphosphoric acid," The Journal of Organic Chemistry, V. 38, No. 23, p. 4071, 1973.
22. H. J. Kim, S. Y. Cho, S. J. An, Y. C. Eun, J. Y. Kim, H. K. Yoon, H. J. Kweon, and K. H. Yew, "(Synthesis of Poly 2, 5-benzimidazole) for Use as a Fuel-Cell Membrane," Macromolecular rapid communications, V. 25, No. 8, p. 894, 2004.
23. J. Jouanneau, R. Mercier, L. Gonon, and G. Gebel, "Synthesis of sulfonated polybenzimidazoles from functionalized monomers: preparation of ionic conducting membranes," Macromolecules, V. 40, No. 4, p. 983, 2007.
24. C.-H. Shen, S. L.-C. Hsu, E. Bulycheva, and N. Belomoina, "High temperature proton exchange membranes based on poly(arylene ether)s with benzimidazole side groups for fuel cells," Journal of Materials Chemistry, V. 22, No. 36, p. 19269, 2012.
25. R. T. Foster, and C. Marvel, "Polybenzimidazoles. IV. Polybenzimidazoles containing aryl ether linkages," Journal of Polymer Science Part A: General Papers, V. 3, No. 2, p. 417, 1965.
26. T.-H. Kim, S.-K. Kim, T.-W. Lim, and J.-C. Lee, "Synthesis and properties of poly (aryl ether benzimidazole) copolymers for high-temperature fuel cell membranes," Journal of Membrane Science, V. 323, No. 2, p. 362, 2008.
27. B. Xing, and O. Savadogo, "The effect of acid doping on the conductivity of polybenzimidazole (PBI)," Journal of New Materials for Electrochemical Systems, V. 2, p. 95, 1999.
28. M. Kawahara, J. Morita, M. Rikukawa, K. Sanui, and N. Ogata, "Synthesis and proton conductivity of thermally stable polymer electrolyte: poly (benzimidazole) complexes with strong acid molecules," Electrochimica Acta, V. 45, No. 8, p. 1395, 2000.
29. M. Hogarth, X. Glipa, and G. Britain, "High temperature membranes for solid polymer fuel cells," Harwell Laboratory, Oxfordshire, 2001.
30. K. D. Kreuer, A. Rabenau, and W. Weppner, "Vehicle mechanism, a new model for the interpretation of the conductivity of fast proton conductors," Angewandte Chemie International Edition in English, V. 21, No. 3, p. 208, 1982.
31. J. Wainright, J. T. Wang, D. Weng, R. Savinell, and M. Litt, "Acid-Doped Polybenzimidazoles: A New Polymer Electrolyte," Journal of The Electrochemical Society, V. 142, No. 7, p. L121, 1995.
32. H. Pu, W. H. Meyer, and G. Wegner, "Proton transport in polybenzimidazole blended with H3PO4 or H2SO4," Journal of Polymer Science Part B: Polymer Physics, V. 40, No. 7, p. 663, 2002.
33. C. E. Hughes, S. Haufe, B. Angerstein, R. Kalim, U. Mähr, A. Reiche, and M. Baldus, "Probing structure and dynamics in poly [2, 2'-(m-phenylene)-5, 5'-bibenzimidazole] fuel cells with magic-angle spinning NMR," The Journal of Physical Chemistry B, V. 108, No. 36, p. 13626, 2004.
34. M. V. Fuke, P. Adhyapak, U. Mulik, D. Amalnerkar, and R. Aiyer, "Electrical and humidity characterization of m-NA doped Au/PVA nanocomposites," Talanta, V. 78, No. 2, p. 590, 2009.
35. W. Münch, K.-D. Kreuer, W. Silvestri, J. Maier, and G. Seifert, "The diffusion mechanism of an excess proton in imidazole molecule chains: first results of an ab initio molecular dynamics study," Solid State Ionics, V. 145, No. 1, p. 437, 2001.
36. H. Wu, W. Hou, J. Wang, L. Xiao, and Z. Jiang, "Preparation and properties of hybrid direct methanol fuel cell membranes by embedding organophosphorylated titania submicrospheres into a chitosan polymer matrix," Journal of Power Sources, V. 195, No. 13, p. 4104, 2010.
37. R. Bouchet, and E. Siebert, "Proton conduction in acid doped polybenzimidazole," Solid State Ionics, V. 118, No. 3, p. 287, 1999.
38. R. Bouchet, S. Miller, M. Duclot, and J. Souquet, "A thermodynamic approach to proton conductivity in acid-doped polybenzimidazole," Solid State Ionics, V. 145, No. 1, p. 69, 2001.
39. M. F. Schuster, and W. H. Meyer, "Anhydrous proton-conducting polymers," Annual Review of Materials Research, V. 33, No. 1, p. 233, 2003.
40. X. Glipa, B. Bonnet, B. Mula, D. J. Jones, and J. Rozière, "Investigation of the conduction properties of phosphoric and sulfuric acid doped polybenzimidazole," Journal of Materials Chemistry, V. 9, No. 12, p. 3045, 1999.
41. Y. L. Ma, J. S. Wainright, M. H. Litt, and R. F. Savinell, "Conductivity of PBI Membranes for High-Temperature Polymer Electrolyte Fuel Cells," Journal of The Electrochemical Society, V. 151, No. 1, p. A8, 2004.
42. L. L. Hench, and D. R. Ulrich, "Science of ceramic chemical processing," Wiley, New York, 1986.
43. A. Usuki, Y. Kojima, M. Kawasumi, A. Okada, Y. Fukushima, T. Kurauchi, and O. Kamigaito, "Synthesis of nylon 6-clay hybrid," Journal of Materials Research, V. 8, No. 5, p. 1179, 1993.
44. M. S. Wang, and T. J. Pinnavaia, "Clay-polymer nanocomposites formed from acidic derivatives of montmorillonite and an epoxy resin," Chemistry of Materials, V. 6, No. 4, p. 468, 1994.
45. Y. Kurokawa, H. Yasuda, M. Kashiwagi, and A. Oyo, "Structure and properties of a montmorillonite/polypropylene nanocomposite," Journal of Materials Science Letters, V. 16, No. 20, p. 1670, 1997.
46. Y.-H. Yu, C.-Y. Lin, J.-M. Yeh, and W.-H. Lin, "Preparation and properties of Poly (vinyl alcohol)–clay nanocomposite materials," Polymer, V. 44, No. 12, p. 3553, 2003.
47. A. Maity, and M. Biswas, "Water-dispersible conducting nanocomposites of binary polymer systems. I. Poly (N-vinylcarbazole) -polyaniline-Al2O3 nanocomposite system," Journal of Applied Polymer Science, V. 94, No. 2, p. 803, 2004.
48. J.-G. Liu, Y. Nakamura, T. Ogura, Y. Shibasaki, S. Ando, and M. Ueda, "Optically Transparent Sulfur-Containing Polyimide− TiO2 Nanocomposite Films with High Refractive Index and Negative Pattern Formation from Poly (amic acid)− TiO2 Nanocomposite Film," Chemistry of Materials, V. 20, No. 1, p. 273, 2007.
49. J. Zhan, G. Tian, L. Jiang, Z. Wu, D. Wu, X. Yang, and R. Jin, "Superparamagnetic polyimide/γ-Fe2O3 nanocomposite films: Preparation and characterization," Thin Solid Films, V. 516, No. 18, p. 6315, 2008.
50. G. L. Jadav, and P. S. Singh, "Synthesis of novel silica-polyamide nanocomposite membrane with enhanced properties," Journal of Membrane Science, V. 328, No. 1, p. 257, 2009.
51. R. A. Vaia, H. Ishii, and E. P. Giannelis, "Synthesis and properties of two-dimensional nanostructures by direct intercalation of polymer melts in layered silicates," Chemistry of Materials, V. 5, No. 12, p. 1694, 1993.
52. A. Morikawa, Y. Iyoku, M.-A. Kakimoto, and Y. Imai, "Preparation of new polyimide–silica hybrid materials via the sol–gel process," Journal of Material Chemistry, V. 2, No. 7, p. 679, 1992.
53. M. Yoshida, M. Lal, N. D. Kumar, and P. Prasad, "TiO2 nano-particle-dispersed polyimide composite optical waveguide materials through reverse micelles," Journal of Materials Science, V. 32, No. 15, p. 4047, 1997.
54. F.-K. Liu, S.-Y. Hsieh, F.-H. Ko, and T.-C. Chu, "Synthesis of gold/poly (methyl methacrylate) hybrid nanocomposites," Colloids and Surfaces A: Physicochemical and Engineering Aspects, V. 231, No. 1, p. 31, 2003.
55. P. Lijia, C. Dazhu, H. Pingsheng, Z. Xiao, and W. Lvqian, "Alternative method for preparation of CdS/epoxy resin nanocomposite," Materials research bulletin, V. 39, No. 2, p. 243, 2004.
56. Y. Obata, T. Sumitomo, T. Ijitsu, M. Matsuda, and T. Nomura, "The effect of talc on the crystal orientation in polypropylene/ethylene-propylene rubber/talc polymer blends in injection molding," Polymer Engineering & Science, V. 41, No. 3, p. 408, 2001.
57. H. Dislich, "New routes to multicomponent oxide glasses," Angewandte Chemie International Edition in English, V. 10, No. 6, p. 363, 1971.
58. C. J. Brinker, and G. W. Scherer, "Sol-gel science: the physics and chemistry of sol-gel processing," Academic Press, New York, 1990.
59. 陳暉, and 陳姿秀, "分子程度下有機-無機高分子混成材料之製備," 化工技術, V. 8, p. 166, 2000.
60. M. Ochi, R. Takahashi, and A. Terauchi, "Phase structure and mechanical and adhesion properties of epoxy/silica hybrids," Polymer, V. 42, No. 12, p. 5151, 2001.
61. I. Matsuyama, S. Satoh, M. Katsumoto, and K. Susa, "Raman and GC-MS study of the initial stage of the hydrolysis of tetramethoxysilane in acid and base catalyzed sol-gel processes," Journal of Non-crystalline Solids, V. 135, No. 1, p. 22, 1991.
62. A.-M. Siouffi, "Silica gel-based monoliths prepared by the sol–gel method: facts and figures," Journal of Chromatography A, V. 1000, No. 1, p. 801, 2003.
63. R. K. Iler, "The chemistry of silica: solubility, polymerization, colloid and surface properties, and biochemistry," Wiley, New York, 1979.
64. 邱顯烈, "以溶膠-凝膠法製備Epoxy/SiO2奈米複合材及其在高透光性光電元件封裝之應用研究," 國立成功大學化學工程學系, 碩士論文, 2005.
65. 黃嘉緯, "利用溶膠-凝膠法以3-(三羥基矽基)-丙烷磺酸功能性單體製備多巴胺模印高分子之研究," 國立成功大學化學工程學系, 碩士論文, 2010
66. G. Socrates, and G. Socrates, "Infrared and Raman characteristic group frequencies: tables and charts," Wiley, Chichester, 2001.
67. M. Sadeghi, M. A. Semsarzadeh, and H. Moadel, "Enhancement of the gas separation properties of polybenzimidazole (PBI) membrane by incorporation of silica nano particles," Journal of Membrane Science, V. 331, No. 1, p. 21, 2009.
68. 莊士緯, "高溫質子交換膜燃料電池用之含氟聚苯咪唑及其奈米複合材料合成與性質之研究," 國立成功大學材料科學及工程學系, 碩士論文, 2008.
69. P. Musto, M. Abbate, M. Lavorgna, G. Ragosta, and G. Scarinzi, "Microstructural features, diffusion and molecular relaxations in polyimide/silica hybrids," Polymer, V. 47, No. 17, p. 6172, 2006.
70. H. Pei, L. Hong, and J. Y. Lee, "Polymer electrolyte membrane based on 2-acrylamido-2-methyl propanesulfonic acid fabricated by embedded polymerization," Journal of Power Sources, V. 160, No. 2, p. 949, 2006.
校內:2018-08-01公開