| 研究生: |
林韋孝 Lin, Wei-Hsiao |
|---|---|
| 論文名稱: |
單負超穎與超導材料電磁微波與光學性質之研究 Study of microwave and optical properties in single-negative metamaterials and superconductors |
| 指導教授: |
張守進
Chang, Shoou-Jinn 吳謙讓 Wu, Chien-Jang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 155 |
| 中文關鍵詞: | 超穎材料 、超導體 、兆赫 、光子晶體 |
| 外文關鍵詞: | metamaterial, superconductor, terahertz, photonic crystal |
| 相關次數: | 點閱:122 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文針對電磁波在兩種不同性質的單負超穎材料的特性為主軸。其中一種為人造的超穎材料,另一種為常見的超導材料。在超穎材料中,我們利用介電係數其實部為負及其導磁係數實部為正,與另一種介電係數其實部為正及其導磁係數實部為負的單負超穎材料來分別探討其該材料頻率響應。然而在電動力學的領域中,超導體也可視為一種介電係數實部為負數的單負材料。
第一部分是利用具有實部為負的介電係數,及另一種實部為負的導磁係數之單負超穎材料所組成的雙層材料結構,來探討這種具有單負超穎雙層結構的電磁波特性。此外,就具有衰減成分的單負材料中,分別利用橫向電波與橫向磁波來探討其材料的微波性質,進而計算出其電磁波偏極的程度。在反射率部分,在變化入射角為前提之下,橫向磁波較橫向電波來的大,這與常見實部皆為正的介電係數與導磁係數的材料有著明顯的差異。此外,針對不同材料的厚度及不同的衰減程度之下,研究共振穿隧現象。其結果顯示,在這種特殊的單負超穎材料雙層結構中,上述兩種不同單負材料的正實數項、材料的衰減成分及不同的入射角度皆強烈的影響其共振穿隧的能力。
第二部分是以超導體與介電質薄膜所組成之一維結構光子晶體進而探討其光子晶體在兆赫頻率之電磁波特性。此種特殊的光子晶體結構可以製作出具有光子通帶的多通道穿透式濾波器;在極低溫條件之下,其透射頻譜顯示出一種具有完美梳子狀的共振峰值;反之,在高溫條件之下,其峰值會隨著溫度的上升而趨於陡緩。此外,不同超導薄膜厚度之裝填因子效應也一併被探討。這種特殊結構的多通道濾波器其優越性在於不像以往的光子晶體中必須加入缺陷層方可達到穿透共振行為。
在兆赫頻率之下,我們利用傳輸線理論及二流體模型來探討高溫超導薄膜之表面阻抗問題。在該多種結構下,我們分析在空氣中置入半無窮大超導薄膜、有限厚度超導薄膜與半無窮大基板及有限厚度超導薄膜與基板針對不同兆赫頻率來探討其表面阻抗之關係。
This thesis is devoted to the study of electromagnetic wave properties in the single-negative (SNG) materials. Two kinds of SNG materials will be involved. One belongs to the artificial metamaterial (MTM) and the other is the familiar superconductor (SC).
In MTMs, we have an epsilon-negative (ENG) material defined to have a negative real part of the frequency-dependent permittivity and a static positive permeability, and a mu-negative (MNG) material having a negative real part of frequency-dependent permeability and a static positive permittivity. In SCs, electrodynamics of superconductor tells us that they are ENG materials.
In the first part, we shall investigate the electromagnetic wave properties in a model structure of an SNG bilayer which consists of the ENG and MNG layers. The wave transmission and reflection properties due to the losses from the ENG and MNG materials are investigated. The wave properties are investigated based on the calculated reflectance for the s wave (transversal electric wave) and the p wave (transversal magnetic wave) in addition to the degree of polarization. It is found that the angle-dependent reflectance of p wave is larger than that of s wave, which is contrary to the usual material with both positive epsilon and positive mu. The effects of losses coming from the ENG and MNG materials are specially explored and the roles played by their thicknesses are also numerically elucidated.
In addition, for an ENG-MNG pair, the resonant tunneling is strongly dependent on the above-mentioned two static positive parameters. The values of the static permeability in ENG layer and of the static permittivity in MNG layer for obtaining the resonant tunneling are numerically demonstrated. The influence on the resonant tunneling due to the losses from the ENG and MNG materials is also investigated. Besides, we examine the polarization-dependent resonant tunneling, that is, the angular dependence is elucidated.
In the second part, attention will be paid to the study of terahertz wave properties in a one-dimensional superconductor-dielectric photonic crystal. It is found that a terahertz multichanneled transmission filter can be achieved within the photonic passband. This structure possesses the comb-like resonant peaks in transmission spectrum at low temperature. The number of resonant peaks is directly related to the number of periods. The resonant peak height is lowered and broadened as the temperature increases. The dependence of the filling factor in the superconductor layer is also discussed. This filter containing no defect layer in structure is fundamentally different from the usual multichanneled filter based on a photonic crystal containing a photonic quantum well as a defect layer.
Finally, we shall study the terahertz surface impedance for the high-temperature superconducting thin films. The surface impedances for three model structures are considered in this work. We first treat the intrinsic bulk surface impedance for a superconductor occupying the half space. Second, the intrinsic film surface impedance of a superconducting film of finite thickness is calculated. Third, we calculate the effective surface impedance for a superconductor-dielectric layered structure, i.e., a superconducting film on the dielectric substrate of finite thickness. All calculations that will be made are based on the two-fluid model of superconductors together with the transmission line theory.
[1] Rahimi, H., A. Namdar, S. R. Entezar, and H. Tajalli, “Photonic transmission spectra in one-dimensional Fibonacci multilayer structures containing single-negative metamaterials,” Progress In Electromagnetics Research, Vol. 102, 15-30, 2010.
[2] Namdar, A., S. Roshan, H. Rahimi, and H. Tajalli, “Backward Tamm states in 1D single-negtaive metamaterials photonic crystals,” Progress In Electromagnetics Research Letters, Vol. 13, 149-1159, 2010.
[3] Ding, Y., Y. Li, H. Jiang, and H. Chen, “Electromagnetic tunneling in nonconjugated epsilon-negative and mu-negative metamaterials pair,” PIERS Online, Vol. 6, No. 2, 109-112, 2010.
[4] Hsu H.-T., and C.-J. Wu, “Design rules for a Fabry-Perot narrow band transmission filter containing a metamaterial negative-index defect,” Progress In Electromagnetics Research Letters, Vol. 9, 101-107, 2009.
[5] Dong, L., G. Du, H. Jiang, H. Chen, and Y. Shi, “Transmission properties of lossy single-negative materials,” J. Opt. Soc. Am. B, Vol. 26, 1091-1096, 2009.
[6] Wang, Z. Y., X. M. Cheng, X. Q. He, S. L. Fan, and W. Z. Yan, “Photonic crystal narrow filters with negative refractive index structural defects,” Progress In Electromagnetics Research, Vol. 80, 421-430, 2008.
[7] Canto, J. R., S. A. Matos, C. R. Paiva, and A. M. Barbosa, “Effects of losses in layered structure containing DPS and DNG media,” PIERS Online, Vol. 4, No. 5, 546-550, 2008.
[8] Chen, H. S., B. I.Wu, B. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett., Vol. 99, 063903-1-063903-4, 2007.
[9] Cai, W., U. K. Chettiar, A. V. Kidishev, and V. M. Shalaev, Optical cloaking with metamaterials," Nature Photonics, Vol. 1, 224-227, 2007.
[10] Dolling, G., C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science, Vol. 312, 892-893, 2006.
[11] Navarro Cia, M., J. M. Carrasco, M. Beruete, and F. J. Falcone, “Ultra-wideband metamaterial filter based on electroinductive-wave coupling between microstrips,” Progress In Electromagnetics Research Letters, Vol. 12, 141-150, 2009.
[12] Wang, J., S. Qu, J. Zhang, H. Ma, Y. Yang, C. Gu, X. Wu, and Z. Xu, “A tunable left-handed metamaterial based on modified broadside-coupled split-ring resonators,” Progress In Electromagnetics Research Letters, Vol. 6, 35-45, 2009.
[13] Brovenko, A., P. N. Melezhik, A. Y. Poyedinchuk, N. P. Yashina, and G. Granet, “Resonant scattering of electromagnetic wave by stripe grating backed with a layer of metamaterial,” Progress In Electromagnetics Research B, Vol. 15, 423-441, 2009.
[14] Scher, A. D. and E. F. Kuester, “Boundary effects in the electromagnetic response of a metamaterial in the case of normal incidence,” Progress In Electromagnetics Research B, Vol. 14, 341-381, 2009.
[15] Ding, W., L. Chen, and C.-H. Liang, “Numerical study of goos- hÄAnchen shift on the surface of anisotropic left-handed materials,” Progress In Electromagnetics Research B, Vol. 2, 151-164, 2008.
[16] Mirzavand, R., B. Honarbakhsh, A. Abdipour, and A. Tavakoli, “Metamaterial-based phase shifters for ultra wide-band appli-cations,” Journal of Electromagnetic Waves and Applications, Vol. 23, No. 11-12, 1489-1496, 2009.
[17] Yu, G. X., T. J. Cui, W. X. Jiang, X. M. Yang, Q. Cheng, and Y. Hao, “Transformation of different kinds of electromagnetic waves using metamaterials,” Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5-6, 583-592, 2009.
[18] Veselago, V. G., “The electrodynamics of substances with simultaneously negative values of permittivity and permeability,” Sov. Phys. Usp., Vol. 10, 509-514, 1968.
[19] Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneous negative permeability and permittivity,” Phys. Rev. Lett., Vol. 84, 4184-4187, 2000.
[20] McCall, M. W., “What is negative refraction?” Journal of Modern Optics, Vol. 56, 1727-1740, 2009.
[21] Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, John Wiley & Sons, NJ, 2006.
[22] Peiponen, K. E., V. Lucarini, E. M. Vartiainen, and J. J. Saarinen, “Kramers-Kronig relations and sum rules of negative refractive index medium,” Eur. Phys. J. B, Vol. 41, 61-65, 2004.
[23] Alu, A. and N. Engheta, “Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling and transparency,” IEEE Trans. Antennas Propagation, Vol. 51, 2558-2571, 2003.
[24] Wang, L. G., H. Chen, and S. Y. Zhou, “Omnidirectional gap and defect mode of one-dimensional photonic crystals with single-negative materials,” Phys. Rev. B, Vol. 70, 245102, 2004.
[25] Yeh, D.-W. and C.-J. Wu, “Analysis of photonic band structure in a one-dimensional photonic crystal containing single-negative material,” Optics Express, Vol. 17, 16666-16680, 2009.
[26] Sabah, C. and S. Uckun, “Electromagnetic wave propagation through frequency-dispersive and lossy double-negative slab," Opto-Electron. Rev., Vol. 15, 133-143, 2007.
[27] Hsu, H.-T., K.-C. Ting, T.-J. Yang, and C.-J. Wu, “Investigation of photonic band gap in a one-dimensional lossy DNG/DPS photonic crystal,” Solid State Comm., Vol. 150, 644-647, 2010.
[28] Yeh, D.-W. and C.-J. Wu, “Thickness-dependent photonic bandgap in a one-dimensional single-negative photonic crystal,” J. Opt. Soc. Am. B, Vol. 26, 1506-1510, 2009.
[29] Van Duzer, T. and C. W. Turner, “Principles of Superconductive Devices and Circuits” New York, NY: Elsevier North Holland, 1981.
[30] Tinkham, M., Superconductivity. New York, NY: Gordon & Breach, 1965.
[31] Onnes, H. K., “Further experiments with liquid helium. C. On the change of electric resistance of pure metals at very low temperatures, etc. IV. The resistance of pure mercury at helium temperatures,” Commun. Phys. Lab. Univ. Leiden, 11(1206), 17–19, 1911.
[32] Bardeen, J. Bardeen, L. N. Cooper, and J. R. Schreiffer, “Theory of superconductivity,” Phys. Rev., 108 (5), 1175–1204, 1957.
[33] Ferguson, B. and X. C. Zhang, “Materials for terahertz science and technology,” Nature Materials, Vol. 1, 26–33, 2002.
[34] Federici, J. F., B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveria, and D. Zimdars, “THz imaging and sensing for security applications — Explosives, weapons and drugs,” Semicond. Sci. Technol., Vol. 20, S266–280, 2005.
[35] Li, J., “Terahertz wave narrow bandpass filter based on photonic crystal,” Optics Communications, Vol. 283, 2647–2650, 2010.
[36] Cai, M. and E. P. Li, “A novel terahertz sensing device comprising of a parabolic reflective surface and a bi-conical structure,” Progress In Electromagnetics Research, Vol. 97, 61–73, 2009.
[37] Wongkasem, N., A. Akyurtlu, J. Li, A. Tibolt, Z. Kang, and W. D. Goodhue, “Novel broadband terahertz negative refractive index metamaterials: Analysis and experiment,” Progress In Electromagnetics Research, Vol. 64, 205–218, 2006.
[38] Kong, F., K. Li, H. Huang, B.-I. Wu, and J. A. Kong, “Analysis of the surface magnetoplasmon modes in the semiconductor slit waveguide at terahertz frequencies,” Progress In Electromagnetics Research, Vol. 82, 257–270, 2008.
[39] Brorson, S. D., R. Buhleier, J. O. White, I. E. Trofimov, H.-U. Habermeier, and J. Kuhl, “Kinetic inductance and penetration depth of thin superconducting films measured by THz-pulse spectroscopy,” Phys. Rev. B, Vol. 49, 6185–6187, 1994.
[40] Williams, C., R. Adam, Q. Xie, R. Sobolewski, and O. Harnack, “Nonequilibrium kinetic inductive response of Y-Ba-Cu-O photodetectors,” Supercond. Sci. Technol., Vol. 12, 843–846, 1999.
[41] Luo, C. W., T. C. Huang, M. T. Chiang, K. H. Wu, J. Y. Juang, J.-Y. Lin, and T. M. Uen, “Anisotropic ultrafast dynamics of quasiparticles on CuO2 planes of Y0.7Ca0.3Ba2Cu3O7−δ,” J. Supercond. Novel Magn., Vol. 23, 781–783, 2010.
[42] Kaila, M. M., “High temperature superconductor THz thermal sensors and coolers,” J. Supercond. Novel Magn., Vol. 18, 427– 431, 2005.
[43] Ovsyanniko, G. A., I. V. Borisenko, K. Y. Constantinian, Y. V. Kislinski, A. Hakhoumian, N. G. Pogosyan, and T. V. Zakaryan, “Josephson bicrystal junctions on sapphire substrates for THz frequency application,” J. Supercond. Novel Magn., Vol. 19, 669–673, 2006.
[44] Poddubny, A. N., E. L. Ivchenko, and Yu. E. Lozovik, “Lowfrequency spectroscopy of superconducting photonic crystals,” Solid State Comm., Vol. 146, 143–147, 2008.
[45] Fosshein, K., Superconducting Technology: 10 Case Studies, World Scientific, Singapore, 1991.
[46] Trunin, M. R., “Temperature dependence of microwave surface impedance in high-Tc single crystals,” J. Supercond., Vol. 11, 381–408, 1998.
[47] Newman, N. and W. G. Lyons, “High-temperature superconducting microwave devices,” J. Supercond., Vol. 6, 119–216, 1993.
[48] Gallop, J., “Microwave applications of high-temperature superconductors,” Supercond. Sci. Technol., Vol. 10, A120–141, 1997.
[49] Van Duzer, T., and C. W. Turner, Principles of Superconductive Devices and Circuits, Edward Arnold, London, 1981.
[50] Yeh, P., Optical Waves in Layered Media (Wiley, New York, 1988), Chap. 6.
[51] Lin, W.-H., C.-J. Wu, and S.-J. Chang, “Analysis of angle-dependent unusual transmission in lossy single-negative (SNG) materials, Solid State Comm. Vol. 150, pp. 1729-1732 (2010).
[52] Cottom, M. G., and D. R. Trilly, Introduction to Surface and Superlattice Excitations (University Press, Cambridge, 1989).
[53] Born, M., E. Wolf, Principles of Optics, Cambridge, London (1999).
[54] Yeh, P., Optical Waves in Layered Media (Wiley, New York, 1988), Chap. 5.
[55] Orfanidis, S. J., Electromagnetic Waves and Antennas, Chapter 7, Rutger University, 2008, www.ece.rutgers.edu/~orfanidi/ewa.
[56] Shelby, R. A., D. R. Smith, and S. Schultz, “Experimetal verification of a negative index of refraction,” Science, vol. 292, no. 5514, pp. 77-97 (2001).
[57] Fredkin, D. R. and A. Ron, “Effective left-handed (negative index) composite material,” Appl. Phys. Lett., vol. 81, no. 10, pp. 1753-1755 (2002).
[58] Luo, Z., Z. Tang, H. Luo, and S. Wen, “Polarization-independent low-pass spatial filters based on one-dimensional photonic crystals containing negative-index materials,” Applied Phys. B, vol. 94, pp. 641-646 (2009).
[59] Wu, C.-J., “Microwave response of a nearly ferroelectric superconductor,” J. Appl. Phys., vol. 100, 063908-1-6 (2006).
[60] Wu, C.-J., C. M. Fu, W.-K. Kuo, and T.-J. Yang, “Microwave surface impedance of a nearly ferroelectric superconductor,” Progress In Electromagnetics Research, vol. 39, 39-47, 2007.
[61] Wu, C.-J., Y. L. Chen, and Y.-S. Tsai, “Effective surface impedance for a superconductor-semiconductor superlattic at mid-infrared frequency,” J. Electromagnetic Waves and Appl., vol. 23, 1441-1453 (2009).
[62] Wu, C.-J., “Effective microwave surface impedance of a type-II superconducting thin film in the parallel magnetic field,” J. Appl. Phys., vol. 93, 3450-3456 (2003).
[63] Buhleier, R., S. D. Brorson, I. E. Trofimov, J. O. White, H.-U. Habermeier, and J. Kuhl, “Anomalous behavior of the complex conductivity Y1-xPrxBa2Cu3O7 observed with THz spectroscopy,” Phys. Rev. B, vol. 50, 9672-9675 (1994).
[64] Tinkham, M., Introduction to Superconductivity, McGraw-Hill Inc, (1996).
[65] Lancaster, M. J., Passive Microwave Device Applications of High-Temperature Superconductors, University of Birmingham (1997).
[66] Klein, N., H. Chaloupka, G. Muller, S. Orbach, H. Piel, B. Roas, L. Schultz, U. Klein, and M. Peiniger, “The effective microwave surface impedance of high-Tc thin films,” J. Appl. Phys., vol. 67, 6940-6945 (1990).
[67] Hartemann, P., “Effective and intrinsic surface impedance of high-Tc superconducting thin films,” IEEE Trans. Appl. Supercond., vol. 2, 228-235 (1992).
[68] Birman, J. L., and N. A. Zimbovskaya, “Electrodynamics of nearly ferroelectric superconductors,” Phys. Rev. B, vol. 64, 144506 (2001).
[69] Wu, C.-J., “Thickness-dependent effective surface resistances of nearly ferroelectric superconductors,” Phys. Lett. A, vol. 364, 163-166 (2007).
[70] Wu, C.-J. and Z. H. Wang, “Properties of defect modes in one-dimensional photonic crystals,” Prog. In Electromag. Res. vol. 103, 169-184 (2010).
[71] Qiao, F., C. Zhang, J. Wan, and J. Zi “Photonic quantum-well structures: multiple channeled filtering phenomena,” Appl. Phys. Lett. vol. 77, 3698-3701 (2000).
[72] Zhang, Y. and B.-Y. Gu, “Aperiodic photonic quantum-well structures for multiple channeled filtering at arbitrary preassigned frequencies,” Optics Express vol. 12, 5910-5915 (2004).
[73] Feng, C. S., L. M. Mei, L. Z. Cai, P. Li, and X. L. Yang, “Resonant modes in quantum well structure of photonic crystals with different lattice constants,” Solid State Commun. vol. 135, 330-334 (2005).
[74] Haxha, S., W. Belhadj, F. Abdelmalek, and H. Bouchriha, “Analysis of wavelength demultiplexer based on photonic crystals,” IEE Proc. Optoelectron. vol. 152, 193-198 (2005).
[75] Liu, J., J. Sun, C. Huang, W. Hu, and M. Chen, “Improvement of spectral efficiency based on spectral splitting in photonic quantum-well structures,” IET Optoelectron. vol. 2, 122-127 (2008).
[76] Liu, J., J. Sun, C. Huang, W. Hu, and D. Huang, “Optimizing the spectral efficiency of photonic quantum well structures,” Optik vol. 120, 35-39 (2009).
[77] Xu, C., X. Xu, D. Han, X. Liu, C. P. Liu, and C. J. Wu, “Photonic quantum-well structures containing negative-index materials,” Optics Commun. 280, 221-224 (2007).
[78] Bian, T. and Y. Zhang, “Transmission properties of photonic quantum well composed of dispersive materials,” Optik 120, 736-740 (2009).
[79] Li, P. and Y. Liu “Multichannel filtering properties of photonic crystals containing of single-negative materials,” Phys. Lett. A 373, 1870-1873 (2009).
[80] Chen, Y., “Independent modulation of defect modes in fractal photonic crystals with multiple defect layers,” J. Opt. Soc. Am. B 26, 854-857 (2009).
[81] Li, J., “Terahertz wave narrow bandpass filter based on photonic crystal,” Opt. Commun. 283, 2647-2650 (2010), and references therein.
[82] Ricci, M., N. Orloff, and S. M. Anlage, “Superconducting metamaterials,” Appl. Phys. Lett. 87, 034102 (2005).
[83] Takeda, H., K. Yoshino, and A. A. Zakhidov, “Properties of Abrikosov lattices as photonic crystals,” Phys. Rev. B 70, 085109 (2004).
[84] Raymond Ooi, C. H., T. C. Au Yeung, C. H. Kam, and T. K. Lim, “Photonic band gap in a superconductor-dielectric superlattice,” Phys. Rev. B 61, 5920-5293 (2000).
[85] Raymond Ooi, C. H., and T. C. Au Yeung, “Polariton gap in a superconductor-dielectric superlattice,” Phys. Lett. A 259, 413-419 (1999).
[86] Wu, C.-J., M.-S. Chen, and T.-J. Yang, “Photonic band structure in superconductor-dielectric superlattice,” Physica C 432, 133-139 (2005).
[87] Aly, A. H., H.-T. Hsu, T.-J. Yang, C.-J Wu, and C. K. Hwangbo, “Extraordinary optical properties of a superconducting periodic multilayer in near-zero-permittivity operation range,” J. Appl. Phys. 105, 083917 (2009).
[88] Wu, C.-J., C.-L. Liu, and T.-J. Yang, “Investigation photonic band structure in a one-dimensional superconducting photonic crystal,” J. Opt. Soc. Am. B 26, 2089-2094 (2009).
[89] Van Duzer, T. and C. W. Turner, Principles of Superductive Devices and Circuits (Edward Arnold, London, 1981), Chap. 3.
[90] Buhleier, R., S. D. Brorson, I. E. Trofimov, J. O. White, H.-U. Habermeier, and J. Kuhl, “Anomalous behavior of the complex conductivity Y1-xPrxBa2Cu3O7 observed with THz spectroscopy,” Phys. Rev. B 50, 9072-9075 (1994).
[91] Poddubny, A. N., E. L. Ivchenko, and Yu. E. Lozovik, “Low-frequency spectroscopy of superconducting photonic crystal,” Solid State Commun. 146, 143-147 (2008).
[92] Feng, S., J. M. Elson, and P. L. Overfelt, “Optical properties of multilayer metal-dielectric nanofilms with all-evanescent modes,” Optics Express 13, 4113-4124 (2005).
[93] Fang, Y. T. and Z. C. Liang, “Unusual transmission through one-dimensional photonic crystal in the presence of evanescent wave,” Optics Commun. 283, 2102-2108 (2010).
[94] Wu, C.-J., “Transmission and reflection in a periodic superconductor/dielectric film multilayer structure,” J. Electromag. Waves Appl. 19, 1991-1996 (2005).