簡易檢索 / 詳目顯示

研究生: 林琪媛
Lin, Chi-Yuan
論文名稱: 機械混合對雙酚A和壬基酚在底泥有機質/水介面之非平衡現象之影響
The non-equilibrium distribution of bisphenol A and nonylphenol between sediment organic matter and water at field sites influenced by mechanical mixing
指導教授: 陳婉如
Chen, Wan-Ru
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 66
中文關鍵詞: 雙酚A4-壬基酚機械式搖晃平衡溶解性有機物
外文關鍵詞: Bisphenol A, 4-nonylphenol, Mechanical mixing, Dissolved organic matter
相關次數: 點閱:158下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 內分泌干擾物質(endocrine disrupting chemicals, EDCs)又稱為環境荷爾蒙,其進入到生物體後會對內分泌系統造成干擾,因此殘留於環境中的EDCs很可能會對生態環境或人體健康造成危害。雙酚A (bisphenol A, BPA)為製造聚合性塑膠材料的一種常用原料,4-壬基酚 (4-nonylphenol, 4-NP)則主要被運用於界面活性劑之生產,然而此兩者皆屬於內分泌干擾物質,且廣泛運用於工業產品製造,故其於環境中的相關研究已逐漸受到重視。本團隊過去曾針對台南地區急水溪及鹽水溪中的BPA進行研究,檢測其存在於河川底泥及孔隙水當中的濃度,並測定底泥有機碳含量以計算BPA的有機碳-水分配係數(organic carbon-water partition coefficient, Koc),結果顯示河水流速為BPA在有機碳與水兩相之間分配之最重要因子,急水溪因流速高,其現地Koc (13757 L/kg)遠大於文獻中的平衡Koc值(778 L/kg),推測可能是因為BPA在採集到的孔隙水中的BPA濃度受河水稀釋所致,因此偏離平衡甚遠。然而鹽水溪因流速低,其乾季期間現地Koc為1416 L/kg,河水稀釋現象不顯著,因而其現地Koc較接近平衡值。
    本研究以BPA和4-NP為探討標的,於2016年10月至2017年1月期間定期採集急水溪及鹽水溪各河段之表面水及底泥,檢測此兩種化合物於表面水、孔隙水及底泥中的含量,並利用水平震盪器分別搖晃底泥樣本不同天數 (0天、7天、14天及21天),觀察搖晃混合是否能使目標化合物在底泥有機相與水相之間達成平衡,以瞭解影響環境中汙染物偏離文獻預測值之原因。研究結果顯示:(1)溶解性有機物(DOM)會經由搖晃過程釋出,而溶出趨勢隨搖晃的天數增加而趨緩;(2)BPA之Koc值於搖晃第0到14天會慢慢趨近於文獻Koc值,但是搖晃至21天的數據卻顯示,孔隙水中BPA的濃度明顯降低使得Koc值變大,可能為生物降解作用發生所致;(3)經過不同天數的搖晃之後,4-NP於孔隙水及底泥中的濃度並沒有大幅的變化,可能是因為4-NP的非極性較BPA大,容易累積於底泥當中而不易經由搖晃移動到水相。後續可以藉由本研究水平震盪搖晃結果推估環境樣本中雙酚A與4-壬基酚是否會因擾動而釋出,進而應用於兩種有機汙染物於現地河川的釋出風險。

    Bisphenol A (BPA) and 4-nonylphenol (4-NP) are widely used as raw materials in industry to make plastics and surfactants, respectively. Both of them are recognized as endocrine disrupting chemicals (EDCs) that may affect the reproductive function of wildlife and human. BPA and 4-NP released to the environment were shown to accumulate in river sediment and are likely to threaten the ecosystem and human health. A previous study conducted in our group demonstrated that the in-situ organic carbon-water partition coefficients (Koc) were highly influenced by the flow rate of the rivers. The obtained in-situ Koc of Jishuei (JS) River (13757 L/kg) is much higher than the reported equilibrium Koc (778 L/kg) due to dilution effect caused by the high flow rate.
    It was speculated that the equilibrium of BPA concentrations between the organic carbon and pore water can be achieved if mechanical mixing is provided. In this study, the concentrations of BPA and 4-NP in various matrices, including surface water, pore water, sediment and sediment organic carbon of two rivers in Southern Taiwan, Jishuei (JS) and Yanshuei (YS) Rivers, were quantified after mixing for different durations (0, 7, 14 and 21 days). The results showed that (1) More dissolved organic matter (DOM) leached out as the mixing time increased; (2) The in-situ Koc of BPA gradually approached to the reported equilibrium Koc from 0 to 14 days, but increased significantly after 21 days mixing, which may be attributed to the biodegradation of BPA in pore water; (3) The in-situ Koc of 4-NP did not exhibit remarkable change during the whole mixing period. Owing to the high non-polarity of 4-NP, it had higher affinity to sediment and thus was hard to leach to liquid phase through mechanical mixing. Overall, this study provides the leaching potential of BPA and 4-NP, which offers a possible approach to understand the risk of these two organic pollutants under in-situ condition. Non-polar and nonionic compounds are prone to accumulate in sediment rather than move together with water.

    摘要 II Abstract IV 致謝 VI Contents VIII List of figures XI List of tables XII Chapter 1 Introduction 1 Chapter 2 Literature Review 3 2-1 Bisphenol A 3 2-1-1 Physical and chemical properties of BPA 3 2-1-2 Application and source of BPA 5 2-1-3 The regulation of BPA 5 2-2 Nonylphenol 7 2-2-1 Physical and chemical properties of 4-NP 7 2-2-2 Application and source of 4-NP 9 2-2-3 The regulation of 4-NP 10 2-3 Organic matter 11 2-3-1 Natural organic matter and dissolved organic matter 11 2-3-2 Effects of sediment organic carbon (SOC) on organic compound 14 2-4 Distribution mechanism 15 2-4-1 Sorption mechanism 15 2-4-2 Distribution mechanism of organic compound in soil-water interface 16 2-5 Mechanical mixing 23 Chapter 3 Materials and methods 24 3-1 Reagents and chemicals 24 3-2 Sample collection and pretreatment 24 3-2-1 Sampling sites 24 3-2-2 Sample collection procedure 28 3-2-3 Mechanical mixing process 28 3-2-4 Sample pretreatment 28 3-2-5 Accelerated solvent extraction 30 3-3 Analysis and instruments 30 3-3-1 Water quality 30 3-3-2 Dissolved organic carbon (DOC) and sediment organic carbon (SOC) 31 3-3-3 Quantification of BPA and 4-NP 32 3-3-4 Calculation for ASE recovery rate 33 Chapter 4 Results and discussion 35 4-1 Water quality 35 4-2 DOC in surface water, pore water and sediment 37 4-3 Occurrence of BPA concentration in different medium 41 4-3-1 BPA concentration 41 4-3-2 ASE extraction recovery rate of BPA 43 4-4 Occurrence of 4-NP concentration in different medium 46 4-4-1 4-NP concentration 46 4-4-2 ASE extraction recovery rate of 4-NP 48 4-5 The relationship of BPA concentration in pore water and organic carbon 51 4-6 The relationship of 4-NP concentration in pore water and organic carbon 53 4-7 Comparison between BPA and 4-NP 56 Chapter 5 Conclusions and Suggestions 58 5-1 Conclusions 58 5-2 Suggestions 59 Appendix 65 Appendix (A) Rainfall data from Tainan meteorological observation station 65

    Bovee, T.F.H., Helsdingen, R.J.R., Rietjens, I.M.C.M., Keijer, J. and Hoogenboom, R.L.A.P. (2004). Rapid yeast estrogen bioassays stably expressing human estrogen receptors α and β, and green fluorescent protein: A comparison of different compounds with both receptor types. The Journal of Steroid Biochemistry and Molecular Biology, 91(3), 99-109. doi: https://doi.org/10.1016/j.jsbmb.2004.03.118
    Brussels. (2011). Bisphenol A: Eu ban on baby bottles to enter into force tomorrow. Retrieved May 18, 2017, from http://europa.eu/rapid/press-release_IP-11-664_en.htm
    Careghini, A., Mastorgio, A.F., Saponaro, S. and Sezenna, E. (2015). Bisphenol A, nonylphenols, benzophenones, and benzotriazoles in soils, groundwater, surface water, sediments, and food: A review. Environmental Science and Pollution Research International, 22(8), 5711-5741. doi: 10.1007/s11356-014-3974-5
    Chiou, C.T. (2003). Partition and adsorption of organic contaminants in environmental systems: John Wiley & Sons.
    Chiou, C.T., Peters, L.J. and Freed, V.H. (1979). A physical concept of soil-water equilibria for nonionic organic compounds. Science, 206(4420), 831-832. doi: 10.1126/science.206.4420.831
    Chou, Y.-R. (2016). Effects of environmental organic matters on the distribution of bisphenol A in soil-water interface. 國立成功大學環境工程所碩士班學位論文。
    Corrales, J., Kristofco, L.A., Steele, W.B., Yates, B.S., Breed, C.S., Williams, E.S. and Brooks, B.W. (2015). Global assessment of bisphenol A in the environment: Review and analysis of its occurrence and bioaccumulation. Dose-Response, 13(3), 1559325815598308. doi: 10.1177/1559325815598308
    CW-Research-Ltd. (2013). Taiwan to ban BPA in baby bottles. Retrieved May 18, 2017, from https://chemicalwatch.com/13499/taiwan-to-ban-bpa-in-baby-bottles
    CW-Research-Ltd. (2016). Commission adopts BPA restriction in thermal paper. . Retrieved May 18, 2017, from https://chemicalwatch.com/51797/commission-adopts-bpa-restriction-in-thermal-paper
    Düring, R.-A., Krahe, S. and Gäth, S. (2002). Sorption behavior of nonylphenol in terrestrial soils. Environmental Science & Technology, 36(19), 4052-4057. doi: 10.1021/es0103389
    Danish-EPA. (2013). Fact sheet: Nonylphenol and nonylphenol ethoxylates. Retrieved May 18, 2017, from http://eng.mst.dk/topics/chemicals/legislation-on-chemicals/fact-sheets/fact-sheet-nonylphenol-and-nonylphenol-ethoxylates/
    Day, G.M., Hart, B.T., McKelvie, I.D. and Beckett, R. (1994). Adsorption of natural organic matter onto goethite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 89(1), 1-13. doi: http://dx.doi.org/10.1016/0927-7757(94)02855-9
    Deb, S. and Shukla, M. (2011). A review of dissolved organic matter transport processes affecting soil and environmental quality. J Environment Analytic Toxicol, 1(106), 2161-0525.1000106.
    ECHA. (2012a). Candidate list of substances of very high concern for authorisation. Retrieved May 18, 2017, from https://echa.europa.eu/candidate-list-table
    ECHA. (2012b). Substance name: 4-nonylphenol, branched and linear. Retrieved May 18, 2017, from https://echa.europa.eu/documents/10162/3024c102-20c9-4973-8f4e-7fc1dd361e7d
    Fent, G., Hein, W.J., Moendel, M.J. and Kubiak, R. (2003). Fate of 14c-bisphenol A in soils. Chemosphere, 51(8), 735-746. doi: https://doi.org/10.1016/S0045-6535(03)00100-0
    Flint, S., Markle, T., Thompson, S. and Wallace, E. (2012). Bisphenol A exposure, effects, and policy: A wildlife perspective. Journal of Environmental Management, 104, 19-34. doi: https://doi.org/10.1016/j.jenvman.2012.03.021
    Groshart, C., Okkeman, P. and Pijnenburg, A. (2001). Chemical study on bisphenol A: Rijkswaterstaat, RIKZ.
    Heinonen, J., Honkanen, J., Kukkonen, J.V.K. and Holopainen, I.J. (2002). Bisphenol A accumulation in the freshwater clam pisidium amnicum at low temperatures. Archives of Environmental Contamination and Toxicology, 43(1), 50-55. doi: 10.1007/s00244-002-1146-y
    Helsinki. (2013). ECHA updates the candidate list for authorisation with six new substances of very high concern (SVHCs). Retrieved May, 18, 2017, from https://echa.europa.eu/view-article/-/journal_content/title/echa-updates-the-candidate-list-for-authorisation-with-six-new-substances-of-very-high-concern-svhcs-
    Helsinki. (2017). Four new substances of very high concern added to the candidate list. Retrieved May, 18, 2017, from https://echa.europa.eu/-/four-new-substances-of-very-high-concern-added-to-the-candidate-list
    Hope, D., Billett, M.F. and Cresser, M.S. (1994). A review of the export of carbon in river water: Fluxes and processes. Environmental Pollution, 84(3), 301-324. doi: http://dx.doi.org/10.1016/0269-7491(94)90142-2
    JRC-IHCP. (2010). European union risk assessment report: 4,4'-isopropylidenediphenol (bisphenol-A). http://publications.jrc.ec.europa.eu/repository/bitstream/111111111/15063/1/lbna24588enn.pdf doi:10.2788/40195
    Leenheer, J.A. and Croué, J.-P. (2003). Peer reviewed: Characterizing aquatic dissolved organic matter: ACS Publications.
    Means, J.C., Wood, S.G., Hassett, J.J. and Banwart, W.L. (1980). Sorption of polynuclear aromatic hydrocarbons by sediments and soils. Environmental Science & Technology, 14(12), 1524-1528. doi: 10.1021/es60172a005
    Pedersen, S.N., Christiansen, L.B., Pedersen, K.L., Korsgaard, B. and Bjerregaard, P. (1999). In vivo estrogenic activity of branched and linear alkylphenols in rainbow trout (oncorhynchus mykiss). The Science of the total environment, 233(1-3), 89-96. doi: 10.1016/s0048-9697(99)00182-5
    Pivnenko, K., Pedersen, G.A., Eriksson, E. and Astrup, T.F. (2015). Bisphenol A and its structural analogues in household waste paper. Waste Management, 44, 39-47. doi: https://doi.org/10.1016/j.wasman.2015.07.017
    Schug, T.T., Janesick, A., Blumberg, B. and Heindel, J.J. (2011). Endocrine disrupting chemicals and disease susceptibility. The Journal of Steroid Biochemistry and Molecular Biology, 127(3–5), 204-215. doi: https://doi.org/10.1016/j.jsbmb.2011.08.007.
    Shareef, A., Angove, M.J., Wells, J.D. and Johnson, B.B. (2006). Aqueous solubilities of estrone, 17β-estradiol, 17α-ethynylestradiol, and bisphenol A. Journal of Chemical & Engineering Data, 51(3), 879-881. doi: 10.1021/je050318c
    Shelby, M.D. (2010). Potential human reproductive and development effects of bisphenol A: DIANE Publishing.
    Soares, A., Guieysse, B., Jefferson, B., Cartmell, E. and Lester, J.N. (2008). Nonylphenol in the environment: A critical review on occurrence, fate, toxicity and treatment in wastewaters. Environment International, 34(7), 1033-1049. doi: https://doi.org/10.1016/j.envint.2008.01.004
    USEPA. (2010). Nonylphenol (NP) and nonylphenol ethoxylates (NPEs) action plan.
    Valsecchi, S., Polesello, S. and Cavalli, S. (2001). Recovery of 4-nonylphenol and 4-nonylphenol ethoxylates from river sediments by accelerated solvent extraction.
    Weber, W.J., McGinley, P.M. and Katz, L.E. (1991). Sorption phenomena in subsurface systems: Concepts, models and effects on contaminant fate and transport. Water Research, 25(5), 499-528. doi: http://dx.doi.org/10.1016/0043-1354(91)90125-A
    Ying, G.-G., Kookana, R.S. and Dillon, P. (2003). Sorption and degradation of selected five endocrine disrupting chemicals in aquifer material. Water Research, 37(15), 3785-3791. doi: https://doi.org/10.1016/S0043-1354(03)00261-6
    Ying, G.-G., Williams, B. and Kookana, R. (2002). Environmental fate of alkylphenols and alkylphenol ethoxylates—a review. Environment International, 28(3), 215-226. doi: https://doi.org/10.1016/S0160-4120(02)00017-X
    Yu, Y., Xu, J., Sun, H. and Dai, S. (2008). Sediment–porewater partition of nonylphenol polyethoxylates: Field measurements from lanzhou reach of yellow river, china. Archives of Environmental Contamination and Toxicology, 55(2), 173-179. doi: 10.1007/s00244-007-9121-2
    Zeng, G., Zhang, C., Huang, G., Yu, J., Wang, Q., Li, J., Xi, B., Liu, H. (2006). Adsorption behavior of bisphenol A on sediments in xiangjiang river, central-south china. Chemosphere, 65(9), 1490-1499. doi: http://dx.doi.org/10.1016/j.chemosphere.2006.04.013
    吳建誼,「以固相萃取及氣相層析質議對水環境中壬基苯酚類持久性有機污染物之分析與研究」,國立中央大學化學研究所,2001。
    林居慶、邱成財、秦靜如、洪瑋濃,「土壤中有機汙染物濃度與實際汙染強度關聯性研究計畫」,行政院環保署環境檢驗所103年委託專案研究計畫,2014。
    財政部關務署,統計資料庫查詢系統,2016。. Retrieved 5/18, 2017, from https://portal.sw.nat.gov.tw/APGA/GA03
    經濟部水利署第六河川局,「鹽水溪 (含支流) 河川情勢調查」,2013。
    經濟部水利署第六河川局,「急水溪水系河川情勢調查成果報告」,2014。


    下載圖示 校內:2022-08-21公開
    校外:2022-08-22公開
    QR CODE