| 研究生: |
潘思辰 Pan, Si-Chen |
|---|---|
| 論文名稱: |
應用於抑制光學檢測系統振動之主動平台設計與控制 Design and Control of an Active Stage for Suppressing Motion Induced Vibration in Optical Inspection Systems |
| 指導教授: |
陳國聲
Chen, Kuo-Shen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 198 |
| 中文關鍵詞: | 主動平台 、橡膠軸承 、撓性結構 、振動抑制 、影像檢測 |
| 外文關鍵詞: | Active stage, Rubber bearing, Flexible structure, Vibration suppression, Image verification |
| 相關次數: | 點閱:180 下載:40 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來隨著智慧製造產業的發展,加工和檢測的方式已從傳統人工操作到自動化產線完成,其精度也從毫米等級往微奈米等級進步,在有足夠定位精度需求的自動化高速運動任務中,快速定位和振動抑制技術起著至關重要的作用。一個典型的例子如自動化光學檢測(AOI)機台,由於固有的結構剛性和快速運動期間產生的慣性力,對於點對點運動而言殘余振動將不可避免,這意味著需要更多的等待時間來避免模糊的圖像,而搭載一額外的精密平台搭配控制系統,能有效提升機台的振動抑制能力,從而提升檢測效率。因此本研究發展出一具撓性結構的橡膠軸承主動平台,依據此平台設計相應的控制系統,將平台安裝於線性馬達上,並透過架設CCD鏡頭,驗證主動平台系統的振動抑制能力。在平台設計上,以四組橡膠搭配中心鋁塊組成橡膠軸承拘束平台運動,平台前端固定撓性結構,仿照真實機台中剛性較低的鏡頭支撐結構,以實驗進行系統進行模型參數辨識最終確立了主動平台的數學模型。在控制器設計上,本研究基於平台數學模型,採用了L.T.設計法和輸入修正法進行控制設計,通過L.T.設計法先後發展出發展出A方案與B方案分別應對系統的定位和減振能力。在平台定位方面,A方案的過衝量及安定時間分別為9.2%和0.16s,搭配輸入修正則降至7.1%及0.09s;在振動抑制方面,於線性馬達上進行振動抑制,A方案的殘留振動與安定時間分別為154.1%和1.3s,搭配輸入修正法則為31.0%和0.60s,因此回授控制搭配輸入修正比照單一控制能有效提升系統定位及減振的能力。為進一步提升回授控制系統擾動抑制能力,發展出的B方案在殘留振動與安定時間分別為30.4%與0.25s,減振能力的提升更為明顯。在CCD影像檢測中,主動平台系統採用上述控制策略皆能提早觀測到清晰的產品特徵。本研究設計一主動平台,運用不同的控制器設計,實現了主動平台定位以及減振的能力,並透過影像結果證實了主動平台搭配控制器能夠有效降低光學檢測過程中殘留振動,從而提升光學檢測效率。
Along with the development of industrial technologies in various manufacturing and metrology applications, fast positioning and vibration suppression play important roles in virtually all tasks requiring high speed of maneuvers with sufficient motion accuracy. One typical example is on the optical inspection system, it performs numerous product defect inspections by fast moving to the desired inspection locations and take images for defect evaluation. Due to the inherent structural compliance and the inertial force generated during fast movement, residual vibrations will be inevitable for the point-to-point movement and this implies that additional settling time would be required for avoiding blurred images. Obviously, mounting a controllable stage on machine can effectively reduce residual vibration, thereby improving inspection efficiency. Therefore, this work develops an active stage with rubber bearings and flexible structure equipping with a CCD camera, designs the corresponding controller, and verifying the vibration suppression capability of the active stage system under the action of the linear motor. In terms of stage design, the four sets of rubber-bonded aluminum blocks form rubber bearing which provide stiffness of the stage, and a flexible beam is mounted on stage for imitating the camera-support structure of the real machine. The model parameters are identified by dynamic testing and the mathematical model of the active stage is obtained. In terms of controller design, this work adopts both loop transmission (L.T.) shaping and input shaping methods. Through the L.T. method, two schemes called A and B, have been developed successively to handle the positioning and vibration suppression. On the issue of stage positioning, the overshoot and settling time of the A scheme are 9.2% and 0.16s. Once it cooperating with input shaping scheme, the corresponding performance can be further reduced to 7.1% and 0.09s. On the vibration suppression issue, the residual vibration and settling time of the A scheme are originally 154.1% and 1.3s and are improved to 31.0% and 0.60s with input shaping schemes. Therefore, the shaping-control integration can effectively improve the system controlled performance in comparison with the results from control only. Meanwhile, in order to further improve the vibration suppression in feedback control, we also develop the B scheme and it successfully reduces residual vibration and settling time to 30.4% and 0.25s. Finally, essential AOI inspection experiments are carried. Based on captured image, the active stage employ above schemes can indeed reduce the blur level to achieve a faster inspection. This work successfully confirmed that the active stage control system can effectively reduce residual vibration during optical inspection, thereby improving inspection efficiency.
[1] Servo shaft, “http://www.inoservo.com”.
[2] P. Beauchemin, “Advances in High Speed Automated Optical Inspection (AOI) Systems”, technical article, 2010.
[3] TRI Innovation, AOI TR7500, “https://www.tri.com.tw/en/product/product_detail-11-2-33.html”.
[4] AEROTECH, AGS15000 Gantry System, “https://www.aerotech.com/product-catalog/gantry-system/ags15000.aspx”.
[5] Ching-Ming Chao, “Study of vibration control on single axis piezoelectric positioning stage by using of PID method”, Master Thesis, Southern Taiwan University of Science and Technology, 2017.
[6] DJ Gordon, K Erkorkmaz , “Precision control of a T-type gantry using sensor/actuator averaging and active vibration damping”, Precision Engineering, Volume 36, Issue 2, April 2012.
[7] A.T.Elfizy, G.M.Bone, M.A.Elbestawi, “Design and control of a dual-stage feed drive”, International Journal of Machine Tools and Manufacture, Volume 45, Issue 2, Pages 153-165, February 2005.
[8] Wei-Chih Wang, Jer-Wei Lee, Kuo-Shen Chen, “Design and vibration control of a notch-based compliant stage for display panel inspection applications”, Journal of Sound and Vibration, Volume 333, Issue 10, Pages 2701-2718, 12 May 2014.
[9] J.-W. Lee, Y.-C. Li, K.-S. Chen, Y.-H. Liu, “Design and control of a cascaded piezoelectric actuated two-degrees-of-freedom positioning compliant stage”, Precision Engineering, Volume 45, Pages 374-386, July 2016.
[10] Y. Teng, K. Chen and Y. Chen, "Design and control of a one-dimensional stage based on elastomeric bearing technology," 2016 12th IEEE/ASME, Auckland, pp. 1-6, 2016.
[11] Y. C. Li, “Analysis, Design, and Decoupling Control of a Single-Axis Coarse Fine Stage Using Compliant Mechanisms and Rubber Bearings”, Master Thesis, National Cheng-Kung University, 2017.
[12] K. S. Chen, D. Trumper, and S. Smith, “Design and control for an electromagnetically driven X–Y–θ stage”, Precision Engineering, vol. 26, pp. 355-369, 2002.
[13] 王維志, “具放大機構之單軸壓電驅動撓性精密定位平台之分析、設計、控制”, 國立成功大學機械工程學系學位論文, 2010
[14] 李哲維, “堆疊式壓電雙軸精密定位平台之設計、分析與控制”, 國立成功大學機械工程學系學位論文, 2011
[15] 林佩君, “雙軸式材料測試系統之設計與實驗及其在橡膠軸承之應用”, 國立成功大學機械工程學系學位論文, 2014.
[16] 鄭晏峰, “新式雙軸材料測試系統之實現與橡膠壓縮、剪力、疲勞測試”, 國立成功大學機械工程學系學位論文, 2016.
[17] 游逸萱, “結合3D列印與剪力阻尼於撓性定位平台之設計與控制”, 國立成功大學機械工程學系學位論文, 2016.
[18] 鄧諺舉, “新型橡膠軸承一維定位平台之分析、設計、控制”, 成功大學機械工程學系學位論文, 2015.
[19] 陳昱丞, “新型三軸橡膠軸承定位平台之分析、設計與控制”, 國立成功大學機械工程學系學位論文, 2017.
[20] 李昱慶, “結合撓性結構與橡膠軸承之單軸粗細定位平台之設計、分析與解耦合控制”, 國立成功大學機械工程學系學位論文, 2017.
[21] 尹瑞豐, “非線性輸入修正法之研究與其在機電系統減振上之應用”, 國立成功大學機械工程學系學位論文, 2004.
[22] 陳敬元, “輸入修正法結合回授控制之研究與其在長距離移動之機電系統定位最佳化與減振之應用”, 國立成功大學機械工程學系學位論文, 2005.
[23] 戴辰軒, “輸入修正法於天車系統運動之振動抑制控制、實驗驗證與有限元素法結構動態分析”, 國立成功大學機械工程學系學位論文, 2009.
[24] 陳韋如, “有限元素分析於撓性長距離移動系統之輸入修正設計與應用”, 國立成功大學機械工程學系學位論文, 2010.
[25] Colin G. Gordon "Generic criteria for vibration-sensitive equipment", Proc. SPIE 1619, Vibration Control in Microelectronics, Optics, and Metrology,Vol. 1619, pp. 71-85, February 1992.
[26] Eugene I. Rivin, “Vibration isolation of precision equipment”, Precision Engineering, Volume 17, Issue 1, Pages 41-56, 1995.
[27] P. Schellekens, N. Rosielle, H. Vermeulen, M. Vermeulen, S. Wetzels, W. Pril, “Design for Precision: Current Status and Trends”, CIRP Annals, Volume 47, Issue 2, Pages 557-586, 1998.
[28] Butler, H., “Position control in lithographic equipment : an enabler for current-day chip manufacturing”, IEEE Control Systems Magazine, 31(5), 28-47, 2011.
[29] B. J. Yi, G. B. Chung, H. Y. Na, W. K. Kim and I. H. Suh, “Design and experiment of a 3-DOF parallel micromechanism utilizing flexure hinges,” IEEE Transactions on Robotics and Automation, vol. 19, no. 4, pp. 604-612, August 2003.
[30] A. Balasubramanian, M. B. G. Jun, R. E. Devor, S. G. Kapoor, “A submicron multiaxis positioning stage for micro and nanoscale manufacturing processes,” ASME J. of Manufacturing Science and Engineering, vol.130, pp.1-8, June 2008.
[31] Lead rubber bearing, “https://structurae.net/products-services/lasto-lrb-lead-rubber-bearing”.
[32] Rivin, Eugene, “Stiffness and damping in mechanical design”. CRC Press, 1999.
[33] A. E. Barton Martinelli, “Rubber bearings for precision positioning systems”, Master’s thesis, Massachusetts Institute of Technology, 2005.
[34] D. P. Cuff, “Electromagenetic Nanopositioner”, Master’s thesis, Massachusetts Institute of Technology, 2006.
[35] Gent Alan N, “Engineering with rubber: how to design rubber components”. Carl Hanser Verlag GmbH Co KG, 2012.
[36] R. M. Christensen, “Theory of viscoelasticity:an introduction”, Academic Press, 1982.
[37] P. B. Lindley, “Compression module for blocks of soft elastic material bonded to rigid end plates,” Journal of Strain Analysis, vol. 14, pp. 11-16, 1979.
[38] P. B. Lindley, “Engineering design with natural rubber”, The Malaysian Rubber’s Research Association, 1970.
[39] A. N. Gent and P. B. Lindley, “The compression of bonded rubber blocks,” Proceedings of the Institution of Mechanical Engineers, vol. 173, no. 1, pp. 111-122, June 1959.
[40] Huaizhong Li, M. D. Le, “Motion Profile Design to Reduce Residual Vibration of High-Speed Positioning Stages”, IEEE/ASME Transactions on Mechatronics, Volume 14, Page(s) 264 – 269, February 2009.
[41] W. He and S. S. Ge, “Vibration Control of a Flexible Beam With Output Constraint,” IEEE Transactions on Industrial Electronics, vol. 62, no. 8, pp. 5023-5030, Aug. 2015.
[42] Song, G., and Gu, H. “Active Vibration Suppression of a Smart Flexible Beam Using a Sliding Mode Based Controller.” Journal of Vibration and Control, 13(8), 1095–1107, 2007.
[43] Zhi-cheng Qiu,Xian-min Zhang,Hong-xin Wu,Hong-hua Zhang, “Optimal placement and active vibration control for piezoelectric smart flexible cantilever plate”, Journal of Sound and Vibration, Volume 301, Issues 3–5, Pages 521-543, 3 April 2007.
[44] E. Pereira, S. S. Aphale, V. Feliu and S. O. R. Moheimani, “Integral Resonant Control for Vibration Damping and Precise Tip-Positioning of a Single-Link Flexible Manipulator,” IEEE/ASME Transactions on Mechatronics, vol. 16, no. 2, pp. 232-240, April 2011.
[45] T. R. Kane, R. Ryan, And A. K. Banerjee, “Dynamics of a cantilever beam attached to a moving base”, Journal of Guidance, Control, and Dynamics, 10:2, 139-151, 1987.
[46] L. Qiu, E.J. Davison, “Performance limitations of non-minimum phase systems in the servomechanism problem”, Automatica, Volume 29, Issue 2, Pages 337-349, 1993.
[47] Swaminathan Gopalswamy and J. Karl Hedrick, “Tracking nonlinear non-minimum phase systems using sliding control”, International Journal of Control, 57:5, 1141-1158, 1993.
[48] 呂毓笙, “加速度回授於撓性結構之振動控制”, 國立成功大學機械工程學系學位論文, 2014.
[49] Danielle Collins, “How do rotary voice coil actuators work”, Motion Control Tips, July 17, 2018.
[50] Danielle Collins, “3 things to consider when choosing a linear servo motor”, Motion Control Tips, February 8, 2019.
[51] Panasonic, Laser displacement sensor, “https://www.panasonic.biz/ac/na/service/tech_support/fasys/tech_guide/measurement/laser/index.jsp”.
[52] Raspberry Pi, “https://www.raspberrypi.org/”.
[53] Vogel Business Media, Motion Control, "https://www.vogelitalia.it"
[54] Singiresu S. Rao, “Mechanical Vibration”, Fifth Edition, 1993.
[55] Free Vibration of a Cantilever Beam (Continuous System), “http://vlab.amrita.edu/?sub=62&brch=175&sim=1080&cnt=1”, Retrieved 9 March 2019
[56] J. G. Ziegler and N. B. Nichols, “Optimum settings for automatic controllers,” Transactions of the ASME, vol.64, pp.759–768, 1942.
[57] W. E. Singhose, “Command Generation for Flexible Systems”, Ph.D. Thesis, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 1997.
[58] B.W. Rappole, N.C Singer., W.P. Seering, “Multiple-Mode Impulse Shaping Sequences for Reducing Residual Vibrations”, 23rd biennial Mechanisms conference, Minneapolis, MN, 1994.