| 研究生: |
林杰民 Lin, Jie-Min |
|---|---|
| 論文名稱: |
非同步實測風致振動紀錄應用隨機遞減與修正亞伯拉罕時域法之結構動態參數識別研究 Identification of Structural Dynamic Parameters Using Random Decrement And Modified Ibrahim Time Domain Techniques Through Asynchronous Measured Wind-Induced Vibration Records |
| 指導教授: |
朱世禹
Chu, Shih-Yu 方中 Fang , Chung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 141 |
| 中文關鍵詞: | 智慧建築 、結構健康監測 、無輸入系統識別 、隨機遞減法 、修正亞伯拉罕時域法 、自然頻率 、阻尼比 、濾波器 |
| 外文關鍵詞: | smart buildings, structural health monitoring, Output-only system identification, Random Decrement Technique, Modified Ibrahim Time Domain Method, natural frequency, damping ratio, filtering |
| 相關次數: | 點閱:4 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,隨著智慧建築與結構健康監測技術的發展,如何於無外力激發條件下準確識別建築物之動態特性,已成為結構工程領域的重要研究課題。為此,本文探討結合隨機遞減法(Random Decrement, RD)與修正亞伯拉罕時域分析法(Modified Ibrahim Time Domain Method, MITD)之無輸入系統識別方法,進行結構動態參數(自然頻率與阻尼比)之準確估算。
本文首先從理論層面推導RD與MITD之數學基礎,說明其適用於處理白噪訊下之結構反應,並可萃取自由振動訊號以進行模態參數識別。接著,透過MATLAB與ETABS建立單自由度與多自由度數值模型,進行模擬驗證,探討不同物理量(位移、速度、加速度)、門檻值與自由度數對識別結果之影響。結果顯示:RD具良好的主模態頻率識別能力,加速度訊號在多模態系統中表現最穩定;MITD則在單模態下表現優異,但對阻尼比之辨識敏感度較高,於多模態情況下穩定性較差。
此外,本文亦建構簡化建築模型進行實務模擬,並探討濾波器階數對信號振幅與相位之影響,驗證經由二階濾波與雙重積分所得之位移結果具良好準確性,能有效還原結構動態反應。研究結果可提供未來於結構健康監測中,進行模態參數識別與位移重建之參考依據。
In recent years, with the development of smart buildings and structural health monitoring technologies, accurately identifying the dynamic characteristics of structures without external excitations has become a critical issue in structural engineering. This study investigates an output-only system identification approach by combining the Random Decrement (RD) with the Modified Ibrahim Time Domain Method (MITD) to estimate dynamic parameters such as natural frequencies and damping ratios.
Theoretical derivations of RD and MITD are first presented to establish their applicability in extracting free vibration responses from structures under white noise excitation. Numerical simulations using single-degree-of-freedom (SDOF) and multi-degree-of-freedom (MDOF) models, implemented in MATLAB and ETABS, are conducted to validate the proposed methods and examine the influence of different physical quantities (displacement, velocity, acceleration), threshold levels, and system degrees of freedom. Results demonstrate that RD is effective in identifying dominant modal frequencies, with acceleration signals providing the most stable performance in multi-modal systems. MITD shows high accuracy in single-mode identification but reveals sensitivity in damping estimation under complex modal conditions.
Furthermore, a simplified structural model is built to simulate real-world practical cases. The study examines the influence of filter order on signal amplitude and phase, and confirms that displacement results obtained through second-order filtering and double integration from acceleration data are accurate and consistent with the structural model’s output. These results suggest that the method is suitable for reconstructing displacement in practical use.
The findings of this study serve as a valuable reference for future structural health monitoring and output-only modal analysis applications.
[ 1 ] Cole, H. A. (1973). On-line failure detection and damping measurement of aerospace structures by random decrement signatures (NASA CR-2205). National Aeronautics and Space Administration.
[ 2 ] Ibrahim, S. R., & Mikulcik, E. C. (1977). A method for the direct identification of vibration parameters from the free response. The Shock and Vibration Bulletin, 47(4), 183–198.
[ 3 ] Vandiver, J. K., Dunwoody, A. B., Campbell, R. B., & Cook, M. F. (1982). A mathematical basis for the random decrement vibration signature analysis technique. Journal of Mechanical Design, 104(2), 307–313.
[ 4 ] Ibrahim, S. R. (1982). Modal identification using the Ibrahim time domain method. Journal of Spacecraft and Rockets, 19(5), 456–463.
[ 5 ] Yang, J. C. S., Dagalakis, N. G., Everstine, G. C., & Wang, Y. F. (1983). Measurement of structural damping using the random decrement technique. Shock and Vibration Bulletin, 53(4), 43–72.
[ 6 ] Ibrahim, S. R. (1984). Investigation of the time domain modal analysis technique. The Shock and Vibration Bulletin, 54(2), 171–184.
[ 7 ] Ibrahim, S. R. (1993). Time-domain modal identification: Theory and applications. AIAA Journal, 31(2), 354–362.
[ 8 ] Sarkar, P. P., Jones, N. P., & Scanlan, R. H. (1994). Identification of aeroelastic parameters of flexible bridges. Journal of Engineering Mechanics, 120(8), 1718–1742.
[ 9 ] Chopra, A. K. (2020). Dynamics of structures: Theory and applications to earthquake engineering (5th ed., SI units). Pearson Education Limited.
[ 10 ] Awan, M. S., Javed, A., Afzal, M. F. U. D., Vilchez, L. F. N., & Mehrabi, A. (2023). Evaluation of system identification methods for free vibration flutter derivatives of long-span bridges. Applied Sciences, 13(8), 4672.
[ 11 ] 王哲夫(1993)。被動調節阻尼器之最佳設計暨應用(碩士論文)。國立中興大學土木工程研究所。
[ 12 ] 高雍超(1994)。裝設調節質量阻尼器結構之設計要領與系統識別(碩士論文)。國立中興大學土木工程研究所。
[ 13 ] 林其璋、高雍超、王哲夫(1995)。應用部份量測之結構系統識別。《中國土木水利工程學刊》,7(3)。
[ 14 ] 吳開慶(1996)。應用地震反應記錄之扭轉耦合結構參數識別(碩士論文)。國立中興大學土木工程學研究所。
[ 15 ] 黃炯憲、蔡福超、黃錦勳(1998)。隨機遞減法在建築物微振時間域系統參數識別之應用。《中國土木水利工程學刊》,10(3)。
[ 16 ] 王國棟(1999)。微動量測之系統識別(碩士論文)。國立成功大學土木工程研究所。
[ 17 ] 曹松華(2004)。隨機遞減法於非定常環境振動模態參數識別之應用(碩士論文)。國立成功大學航空太空工程學系。
[ 18 ] 王國書(2007)。結構動態反應訊號自動監測系統於剛心識別之應用(碩士論文)。國立成功大學土木工程研究所。
[ 19 ] 呂宏猷(2009)。結構微振資料之模態參數識別(碩士論文)。國立成功大學土木工程研究所。
[ 20 ] 內政部建築研究所(2014)。建築物耐風設計規範及解說(台內營字第1030813291號令)。中華民國內政部。
[ 21 ] 陳敬函(2018)。高樓建築柔性氣彈模型振動台試驗與風動試驗之參數識別(碩士論文)。國立成功大學土木工程學研究所。
[ 22 ] 朱世禹(2023)。元宇宙時空下數位分身即時複合試驗與BIM於營建產業的應用概況。載於《三聯技術通訊》,127,貝蒙論壇專欄,台北。
[ 23 ] 蔡明樹、賴子晴(2024)。高層建築受風反應之擾動特性風洞試驗研究。中華民國第十七屆結構工程暨第七屆地震工程研討會。
[ 24 ] 三聯科技股份有限公司. pALERT S303 軟硬體操作手冊。[線上手冊]。取自https://sanlien.com.tw/product/palert-q332-s303-
[ 25 ] 三聯科技股份有限公司. SIAP+MICROS T033 TDV 風向計 軟硬體操作手冊。[線上資料]。取自https://sanlien.com.tw/product/siapmicros-t033-tdv-