簡易檢索 / 詳目顯示

研究生: 黃佳才
Huang, Chia-Tsai
論文名稱: 運用正交極化光於相位移的頻域光學同調斷層掃描技術量測樣品厚度與折射率
Using Orthogonally Polarized Light Over Phase-Shifting FD-OCT to Measure Sample’s Thickness and Refractive Index
指導教授: 黃振發
Huang, Jen-Fa
共同指導教授: 鄭旭志
Cheng, Hsu-Chih
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 72
中文關鍵詞: 頻域光學同調斷層掃描相位移演算法全域量測一次性量測
外文關鍵詞: Frequency-Domain Optical Coherence Tomography (FD-OCT), Phase-shifting algorithms, full-range measurement, one-shot measurement
相關次數: 點閱:115下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光學同調斷層掃描(Optical Coherence Tomography)是相當具有潛力的光學造影技術。其應用低同調干涉儀的原理並以麥克森干涉儀作為系統的基本架構,此系統可對未知樣品進行非侵入的內部結構成像。由於其具有非侵入性與高解析度的優點,因此其廣泛用於生醫領域與工業領域上。
    頻域光學同調斷層掃描技術(FD-OCT)相對於時域光學同調斷層掃描技術,具有較高的採樣速率跟解析度的優點。但在傳統的頻域光學同調斷層掃中,光譜儀所接收到的頻譜訊號需要經過反傅立葉轉換,然而在轉換過程中,自相干涉項的產生導致樣品的干涉訊號不易被區分,而鏡像的產生導致量測範圍受限制。因此消除不必要的訊號成了當前的主要工作。
    在本論文中,我們提出了一個改良的頻域光學同調斷層掃描系統架構,可以同時獲得兩組相位移的正交極化光,利用相位移演算法消除不必要的訊號達到兩倍的量測範圍,並且改良光路上的設計,使我們可以同時量測出未知樣品的厚度及折射率。換句話說,這提出的改良頻域頻域光學同調斷層掃描可以一次性且全域的同時量測光學樣品的厚度與折射率。

    Optical coherence tomography (OCT) is a potential technique of optical imaging. It utilized the principle of low coherence interferometry (LCI) and based on the structure of Michelson interferometer. The OCT system can provide internal structure of unknown sample with non-invasive imaging. Because optical coherence tomography has the advantages of non-invasive and high-resolution, it is applied in biomedical and industrial fields.
    Compare to the TD-OCT, the FD-OCT has the advantage of higher sampling speed and resolution. The OSA detect the spectrum of interference signal, the spectrum of interference signal need to be transform by the inverse Fourier transformation (IFFT). In the conversion process, the generated autocorrelation terms and symmetry mirror image result in the interference signals of the sample no easy to be distinguished and the measurement range is restricted. Thus eliminating the noise term became present main job.
    In this study, we propose an improved FD-OCT structure that can simultaneously obtain the two phase-shifting signals from two orthogonally polarized lights. By phase-shifting algorithms over orthogonally polarized light, eliminating those unnecessary noise terms and doubling the measurement range. By designing the optical path, we can simultaneously measure the refractive index and the thickness of unknown sample by FD-OCT. In other words, this improve structure of FD-OCT achieve simultaneous measurement of thickness and refractive index of optical samples based on full-range and one-shot measure.

    中文摘要 II ABSTRACT III Chapter 1. Introduction 1 1.1. History review of Optical Coherence Tomography 1 1.2. Motivation of the Research 7 1.3. Overview of the Chapters 9 Chapter 2. The principle of the optical coherence tomography 10 2.1. Low Coherence Interferometer 10 2.2. Axial Resolution of the OCT system 17 2.3. Lateral Resolution of the OCT system 19 2.4. Jones matrix of polarization states 21 2.5. Phase-shifting Algorithm 27 Chapter 3. Comapre Time-Domain and Frequency-Domain OCT 37 3.1. The proposed Fiber-based OCT structure 37 3.2. Theoretical analyses of optical path design 39 3.3. Experimental Steps 41 3.4. Experimental Results and Discussions 43 Chapter 4. Improving Structure of FD-OCT 48 4.1. Structure of the proposed FD-OCT 48 4.2. Theoretical analyses 51 4.3. Experimental Results and Discussions 59 Chapter 5. Conclusions 69 Reference 71

    [1]M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt.7(3), 457–463 (2002)
    [2]P. A. Flournoy, R. W. McClure, and G. Wyntjes, “White-Light Interferometric Thickness Gauge,” Appl. Opt. Vol.11, pp.1907-1915, 1972
    [3]R. C. Youngquist, S. Carr, and D. E. N. Davies, “Optical coherence domain reflectometry: A new optical evaluation technique,” Opt. Lett., vol. 12, pp. 158–160, 1987
    [4]J. G. Fujimoto, D. Huang, E. A. Swanson, C. P. Lin, J. S. Shuman,W. G. Stinson,W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, “Optical coherence tomography,”Science, Vol.254, Nov.1991,pp. 1178-1181
    [5]A. F. Fercher, C. K. Hitzenberger, “Measurement of intraocular distances by backscattering spectral interferometry,”Opt., Commun. 117, pp. 443-448, 1995
    [6]T.Fukano and I.Yamaguchi, “Simultaneous measurement of thicknesses and refractive indices of multiple layers by a low-coherence confocal interference microscope,”Opt. Lett., Vol.21, pp. 1942-1944,1996
    [7]M R. Strakowski.; J. Plucinski; M. Jedrzejewska-Szczerska; et al., “Polarization sensitive optical coherence tomographyfor technical materials investigation”, Sensors and actuators a-physical, Vol. 142, issue.1, pp.104-110, 2008
    [8]A. B. Vakhtin, K. A. Peterson,W. R. Wood, and D. J. Kane,“Differential spectral interferometry: an imaging technique forbiomedical applications,”OPTICS EXPRESS, Vol. 11, No. 8, 21April 2003
    [9]M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomographytechnique in eye imaging,” Opt. Lett. 27, 1415–1417 (2002)
    [10]R. A. Leitgeb, C. K. Hitzenberger, A. F. Fercher, and T.Bajraszewski, “Phase-shifting algorithm to achieve highspeed long-depth-range probing by frequency-domain optical coherence tomography,” Opt. Lett. 28, 2201–2203 (2003)
    [11]H. C. Cheng, J. F. Huang, and Y. H. Hsieh, “Numerical analysis of one-shot full-range FD-OCT system based on orthogonally polarized light,” Opt. Commun. 282, 3040–3045 (2009)
    [12]H. C. Cheng, M. S. Shiu, “Experimental demonstration of high-speed full-range Fourier domain optical coherence tomography imaging using orthogonally polarized light and a phase-shifting algorithm,” Applied Optics, Vol. 51, Issue 36, pp. 8762-8768 (2012)
    [13]J. W. Goodman, Statistical Optics, New York, John Wiley and Sons, pp. 164-169, 1985
    [14]D. Guenther Robert , Modern Optics, 1990.
    [15]Amnon Yariv, Pochi Yeh. “Photonics,” Optical Electronics in Modern Communications, sixth edition, chap1.6, pp.25-27.
    [16]Amnon Yariv, Pochi Yeh. “Photonics,” Optical Electronics in Modern Communications, sixth edition, chap1.9, pp.45-46.
    [17]E. Götzinger, M. Pircher, R. Leitgeb, and C. Hitzenberger, “High speed full range complex spectral domain optical coherence tomography,” Opt. Exp., vol. 13, issue 2, pp. 583-594, Jan. 2005.
    [18]C.T Yen, H.C. Cheng, J.F. Huang, et al. “Simultaneous measuring the refractive index and thickness of an optical sample by using improved fiber-based optical coherence tomography”, Opt Eng. 53(4), 2014

    無法下載圖示 校內:2019-07-21公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE