簡易檢索 / 詳目顯示

研究生: 陳毅祥
Chen, Yi-Hsiang
論文名稱: 具膽紅素模版高分子外層矽球載體之製備及對膽紅素吸附之探討
Preparation of silica spherical carriers coated with bilirubin imprinted polymer shell and the investigation on the adsorption of bilirubin
指導教授: 許梅娟
Syu, Mei-Jywan
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 49
中文關鍵詞: 膽紅素分子模版高分子奈米氧化矽球
外文關鍵詞: bilirubin, molecularly imprinted polymer, nano silica particle
相關次數: 點閱:114下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 膽紅素 (Bilirubin),為血紅素 (hemoglobin) 蛋白質代謝分解之產物,其濃度高低可反映出肝膽功能之正常與否。正常人體每日可以生成 250 ~ 350 mg 的膽紅素,在生理檢測上,總膽紅素 (total bilirubin) 濃度的標準值為 0.2 ~ 1.5 mg/dL,直接膽紅素 (direct bilirubin) 的標準值則小於 0.4 mg/dL,兩者之間的差值即為間接膽紅素 (indirect bilirubin) 的濃度。當人體總膽紅素濃度大於 2 mg/dL,即膽紅素濃度偏高,代謝不正常,因此會出現黃疸現象。因此對血中膽紅素濃度之檢測就極為重要。
    為了達到較優之吸附專一性,於本研究中引用分子模版高分子之觀念,乃是藉由功能性單體與目標模版分子膽紅素作用先形成複合物,再依序加入交聯劑、起始劑進行聚合,其中交聯劑對模版材料形成孔洞結構之穩定性與保有性扮演極重要的角色。再以適當溶劑萃洗或化學斷鍵,自高分子中移除內含之膽紅素,即可得具特定孔洞的模版高分子。
    於製備具膽紅素特定吸附孔洞之模印高分子,本研究之特色在於:在聚合過程中摻混奈米二氧化矽球 (NSP, nano silica particles),並以矽醇修飾其表面,因此使模版分子膽紅素可與矽球表面作用,以利模版高分子膜更牢固地形成於矽球表面;除此之外,使用相對低含量的交聯劑,試圖在奈米矽球擔體形成較均勻之薄層模版材料,以避免機械研磨對模版材料專一吸附孔洞之破壞。矽球表面修飾用的矽醇乃是選用具化學官能基的 3-aminopropyltriethoxysilane (APTES),再將 methacrylic acid (MAA) 與之偶合接枝形成 MAA-APTES-NSP,接著再加入單體 MAA、交聯劑 ethylene glycol dimethacrylate (EGDMA) 及 起始劑 2,2-azo-bis-isobutyronitrile (AIBN) 進行熱起始聚合。
    分別以 SEM、TEM、TGA 進行分析鑑定,已成功將 MIP 聚合在 NSP 矽球表面。檢測吸附結果,對膽紅素之模印因子可達 3.676 ± 0.260。以胎牛血清進行對膽紅素專一吸附之干擾測試,得到模印因子也有 1.445 ± 0.044。結果顯示,本研究製備的 MIP-NSP 載體 確實具有對膽紅素分子特異吸附之孔洞。

    Molecularly imprinted polymer (MIP) was prepared by interaction between the template molecule and the functional monomer. During the polymerization, the cross-linker was added to create a three-dimensions matrix to confine the template molecule. Later, remove the template molecule by solvent extraction or break the chemical bonding away from polymer. Then , in this way, we get the MIP who has specific cavities can recognize the template molecule.
    In this research, try to made surface coated bilirubin imprinted polymer. The spherical carrier choose nano silica particles (NSP) because NSP is easy to make an monodisperse particle diameter by stöber method. And NSP surface modified by 3-aminopropyltriethoxysilane (APTES). Meth acrylic acid (MAA) was monomer, ethylene glycol dimethacrylate (EGDMA) was cross-linker, and initiate polymerization by heated. In here, choose 2,2-azo-bis-isobutyronitrile (AIBN) as initiator.The results indicate that NSP was coated with bilirubin-imprinted polymer shell. The imprinted factor was 3.676 ± 0.260 in aqueous solution and 1.445 ± 0.044 in fetal bovine serum.

    第一章 緒論 1 1-1 分子模版高分子 (Molecularly imprinted polymer, MIP) 1 1-1-1 製備流程 2 1-1-2 分子模版高分子的組成 2 1-1-2-1 模版分子 2 1-1-2-2 功能性單體 3 1-1-3-3 交聯劑 3 1-1-3-4 溶劑 4 1-1-4 模印型態 4 1-1-4-1 非共價性模印 4 1-1-4-2 共價性模印 5 1-1-4-3 共價與非共價式模印 5 1-1-5 聚合方式 5 1-1-6 分子模版高分子近期發展 6 1-2 生物化學感測器 6 1-2-1 生化感測元件 (Biological sensing element) 6 1-2-2 生化感測分析 8 1-2-2-1 光學式感測器 8 1-2-2-2 質量式感測器 8 1-2-2-3 電化學感測器 (Electrochemical sensor) 8 1-3 氧化矽球 (Silica particle) 9 1-4 膽紅素 (Bilirubin) 10 1-4-1 膽紅素的生成 10 1-4-2 膽紅素在血液中的輸送 11 1-4-3 黃疸症狀 (Jaundice) 12 1-4-4 膽紅素結構 13 1-4-5 膽紅素之檢測方法 15 第二章 實驗方法與材料 17 2-1 膽紅素的測定 17 2-1-1 呈色法 17 2-2 氧化矽球 (Nano silica particle, NSP) 製備與修飾 19 2-2-1 氧化矽球表面接枝 APTES (APTES-NSP) 19 2-2-2 將APTES開環合成APTES-MAA (APTES-MAA-NSP) 19 2-3 膽紅素模版高分子(膽紅素 MIP)之製備 19 2-3-1 膽紅素 MIP 模印效果之測試 19 2-3-2 膽紅素 MIP 選擇性吸附測試 20 2-3-3 於胎牛蛋白血清(fetal bovine serum, FBS)中對膽紅素之吸附測試 20 2-4 模版高分子物性分析 23 2-4-1 掃描式電子顯微鏡 23 2-4-2 穿透式電子顯微鏡 23 2-4-3 熱重分析儀 23 2-4-4 傅立葉紅外線光譜儀 23 2-5 實驗藥品目錄 24 2-6 實驗儀器目錄 25 第三章 結果與討論 26 3-1 FT-IR 圖譜分析 27 3-2 氧化矽球與模版高分子的表面及結構分析 29 3-3 模印高分子製備條件討論 36 3-3-1 不同的矽烷基團於 NSP 表面接枝之差異 36 3-3-2單體種類的影響 38 3-3-3 交聯劑配比之改變 39 3-4 選擇性與干擾性測試 41 3-4-1 膽紅素與膽綠素的選擇性 41 3-4-2 血清之干擾性感測 42 3-5 空白吸附驗證 44 第四章 結論 45 參考文獻 46

    1. L. Pauling, D. Campbell, D. Pressman, The nature of the forces between antigen and antibody and of the precipitation reaction. Physiological Reviews, 1943. 23: 203–219.
    2. G. Wulff, Molecular imprinting in cross-linked materials with the aid of molecular templates— a way towards artificial antibodies. Angewandte Chemie International Edition in English, 1995. 34(17): 1812-1832.
    3. 楊竣翔,以模版高分子 poly(AMPS-co-EGDMA) 螯合咪唑之電子/質子傳導方式進行對膽紅素之電化學感測。國立成功大學化工系碩士論文,2007.
    4. C. Widstrand, E. Yilmaz, B. Boyd, J. Billing, A. Rees, Molecularly imprinted polymers: a new generation of affinity matrices. American Laboratory, 2006. 38(19): 12.
    5. Y.Q. Li, X. Li, Y. Li, C.K. Dong, P.F. Jin, J.Y. Qi, Selective recognition of veterinary drugs residues by artificial antibodies designed using a computational approach. Biomaterials, 2009. 30(18): 3205-3211.
    6. M.J. Syu, T.C. Chiu, C.Y. Lai, Y.S. Chang, Amperometric detection of bilirubin from a micro-sensing electrode with a synthetic bilirubin imprinted poly (MAA-co-EGDMA) film. Biosensors and Bioelectronics, 2006. 22(4): 550-557.
    7. K. Yoshimatsu, K. Reimhult, A. Krozer, K. Mosbach, K. Sode, L. Ye, Uniform molecularly imprinted microspheres and nanoparticles prepared by precipitation polymerization: The control of particle size suitable for different analytical applications. Analytica Chimica Acta, 2007. 584(1): 112-121.
    8. M.J. Syu, J.H. Deng, Y.M. Nian, Towards bilirubin imprinted poly(methacrylic acid-co-ethylene glycol dimethylacrylate) for the specific binding of α-bilirubin. Analytica Chimica Acta, 2004. 504(1): 167-177.
    9. X.L. Song, J.T. Wang, J. Zhu, Effect of porogenic solvent on selective performance of molecularly imprinted polymer for quercetin. Materials Research, 2009. 12(3): 299-304.
    10. L.Q. Wu, K.C. Zhu, M.P. Zhao, Y.Z. Li, Theoretical and experimental study of nicotinamide molecularly imprinted polymers with different porogens. Analytica Chimica Acta, 2005. 549(1-2): 39-44.
    11. C. Yu, K. Mosbach, Molecular imprinting utilizing an amide functional group for hydrogen bonding leading to highly efficient polymers. The Journal of Organic Chemistry, 1997. 62(12): 4057-4064.
    12. A.G. Mayes, K. Mosbach, Molecularly imprinted polymers: useful materials for analytical chemistry? Trends in Analytical Chemistry, 1997. 16(6): 321-332.
    13. G. Wuff, A. Sarhan, The use of polymers with enzyme-analogous structures for the resolution of racemate. Journal of the Angewandte Chemie International Edition, 1972. 11(3): 341-345.
    14. M.L. Zhang, Z.H. Zhang, L. Liu, L.J. Zhang, L.H. Nie, Preparation and evaluation of core-shell resveratrol molecularly imprinted microspheres. Chinese Journal of Analytical Chemistry, 38(1): 129-132.
    15. E. Pardieu, H. Cheap, C. Vedrine, M. Lazerges, Y. Lattach, F. Garnier, S. Remita, C. Pernell, Molecularly imprinted conducting polymer based electrochemical sensor for detection of atrazine. Analytica Chimica Acta, 2009. 649(2): 236-245.
    16. H. Yan, K. Row, Characteristic and synthetic approach of molecularly imprinted polymer. International Journal of Molecular Sciences, 2006. 7: 155-178.
    17. P. Vadgama, P.W. Crump, Biosensors: recent trends. A review. The Analyst, 1992. 117(11): 1657-1670.
    18. P. Turkewitsch, B. Wandelt, G.D. Darling, W.S. Powell, Fluorescent functional recognition sites through molecular imprinting. A polymer-based fluorescent chemosensor for aqueous cAMP. Analytical Chemistry, 1998. 70(10): 2025-2030.
    19. J. Homola, Present and future of surface plasmon resonance biosensors. Analytical and Bioanalytical Chemistry, 2003. 377(3): 528-539.
    20. K. Marx, Quartz Crystal Microbalance: a useful tool for studying thin polymer films and complex biomolecular systems at the solution- surface interface. Biomacromolecules, 2003. 4(5): 1099-1120.
    21. A.H. Wu, M.J. Syu, Synthesis of bilirubin imprinted polymer thin film for the continuous detection of bilirubin in an MIP/QCM/FIA system. Biosensors and Bioelectronics, 2006. 21(12): 2345-2353.
    22. S.A. Piletsky, A.P.F. Turner, Electrochemical sensors based on molecularly imprinted polymers. Electroanalysis, 2002. 14(5): 317-323.
    23. M.C. Blanco-López, M.J Lobo-Castañón, A.J. Miranda-Ordieres, Voltammetric response of diclofenac-molecularly imprinted film modified carbon electrodes. Analytical and Bioanalytical Chemistry, 2003. 377(2): 257-261.
    24. H. Okuno, T. Kitano, H. Yakabe, M. Kishimoto, B.A. Deore, H. Siigi, T. Nagaoka, Characterization of overoxidized polypyrrole colloids imprinted with L-lactate and their application to enantioseparation of amino acids. Analytical Chemistry, 2002. 74(16): 4184-4190.
    25. P.Y. Chen, P.C. Nien, C.W. Hu, K.C. Ho, Detection of uric acid based on multi-walled carbon nanotubes polymerized with a layer of molecularly imprinted PMAA. Sensors and Actuators B: Chemical, 2009. 146: 466-471.
    26. A.S. de Dios, M.E. Díaz-García, Multifunctional nanoparticles: Analytical prospects . Analytica Chimica Acta, 2010. 666: 1-22.
    27. W. Stöber, A. Fink, E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid and Interface Science, 1968. 26: 62-69.
    28. F.J. Arriagada, K. Osseo-Asare, Synthesis of nanosize silica in aerosol OT reverse microemulsions. Journal of Colloid and Interface Science, 1995. 170: 8-17.
    29. B.Y. Wu, S.H. Hou, F. Yin, Z. Zhao, Y.Y. Wang, X.S. Wang, Q. Chen, Amperometric glucose biosensor based on multilayer films via layer-by-layer self-assembly of multi-wall carbon nanotubes, gold nanoparticles and glucose oxidase on the Pt electrode. Biosensors and Bioelectronics, 2007. 22(12): 2854-2860.
    30. D.A. Lightner, A.F. McDonagh, Molecular mechanisms of phototherapy for neonatal jaundice. Accounts of Chemical Research, 1984. 17: 417-424.
    31. T. Kamisako, Y. Kobayashi, K. Takeuchi, T. Ishihara, K. Higuchi, Y. Tanaka, E.C. Gabazza, Y. Adachi, Recent advances in bilirubin metabolism research: the molecular mechanism of hepatocyte bilirubin transport and its clinical relevance. Journal of Gastroenterology, 2000. 35(9): 659-664.
    32. R. Bonnett, J.E. Davies, M.B. Hursthouse, G.M. Sheldrick, The structure of bilirubin. Proceedings of the Royal Society of London. Series B, Biological Sciences, 1978: 249-268.
    33. D.W. Hutchinson, B. Johnson, A.J. Knell, Tautomerism and hydrogen bonding in bilirubin. Biochemical Journal, 1971. 123(3): 483.
    34. A.W. Nichol, D.B. Morell, Tautomerism and hydrogen bonding in bilirubin and biliverdin. Biochimica et Biophysica Acta (BBA)-General Subjects, 1969. 177(3): 599-609.
    35. R.N. Rand, A. di Pasqua, A new diazo method for the determination of bilirubin. Clinical Chemistry, 1962. 8(6): 570.
    36. Procedure, A., Bilirubin Jendrassik-Grof FS.
    37. S. Murao, N. Tanaka, A new enzyme" bilirubin oxidase" produced by Myrothecium verrucaria MT-1. Agricultural and Biological Chemistry, 1981. 45(10): 2383-2384.
    38. S. Osawa, S. Sugo, T. Yoshida, T. Yamaoka, F. Nomura, An assay for separating and quantifying four bilirubin fractions in untreated human serum using isocratic high-performance liquid chromatography. Clinica Chimica Acta, 2006. 366(1-2): 146-155.
    39. J.D. van Norman, R. Szentirmay, Chemistry of bilirubin and biliverdin in N, N-dimethylformamide. Analytical Chemistry, 1974. 46(11): 1456-1464.
    40. F. Moussa, G. Kanoute, C. Herrenknecht, P. Levillain, F. Trivin, Electrochemical oxidation of bilirubin and biliverdin in dimethyl sulfoxide. Analytical Chemistry, 1988. 60(11): 1179-1185.
    41. 邱琮傑,以分子模版材料製備之電極進行對膽紅素感測之探討。國立成功大學化工系碩士論文,2006.
    42. 石家銘,以分子模版 poly(AMPS-con-EGDMA) 結合奈米碳管修飾電極進行對膽紅素之電化學感測。國立成功大學化工系碩士論文,2008.
    43. G. Baydemir, N. Bereli, M. Andac, R. Say, I.Y. Galaev, Adil Denizli, Bilirubin recognition via molecularly imprinted supermacroporous cryogels. Colloids and Surfaces B: Biointerfaces, 2009. 68: 33-38.
    44. 吳岸樺,膽紅素模版高分子薄膜之製備及在感測上之應用與探討。國立成功大學化工系碩士論文,2004.
    45. 鄭易修,以共價合成單體以製作模版高分子對膽紅素之電化學感測分析。國立成功大學化工系碩士論文,2010.

    無法下載圖示 校內:立即公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE