| 研究生: |
張建宏 Chang, Chien-Hung |
|---|---|
| 論文名稱: |
準分子雷射結晶技術製作多晶矽薄膜之巨觀與巨微觀凝固分析 Macro and Macro-Micro Solidification Analyses on the Fabrication of Poly-Si Thin Films by Using Excimer Laser Crystallized Technology |
| 指導教授: |
趙隆山
Chao, Long-Sun |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 161 |
| 中文關鍵詞: | 凝固 、成核 、多晶矽薄膜 、準分子雷射結晶技術製 、完全熔融能量密度 |
| 外文關鍵詞: | excimer laser crystallized technology, complete melting fluence, solidification, poly-Si thin films, nucleation |
| 相關次數: | 點閱:82 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文提出二種數值分析模式探討準分子雷射結晶技術製作多晶矽薄膜製程之凝固熱傳與結晶成核成長問題,第一種為巨觀模式,以熱源項處理雷射熱源,並使用等效比熱熱焓法處理相變化問題;第二種為巨微觀模式,以古典成核理論處理成核階段,使用介面反應函數處理成長階段,應用二階段修正模式處理晶粒侵犯階段,並以等效比熱熱焓法與熱源法處理相變化問題。數值方法採用有限差分法。在準分子雷射結晶製程中,由雷射能量密度與晶矽薄膜熔融態關係,可定義出三個矽晶成長的主要區域,這三個區域分別為部份熔融、接近完全熔融及完全熔融區域。它們能夠定義一個在接近完全熔融狀態關鍵的臨界能量密度,稱為完全熔融能量密度(Complete Melting Fluence又稱為Fc),在Fc時,將產生相對的最大晶粒。本文數值模擬分析矽薄膜之最高溫度與最大熔化深度隨能量密度變化關係,並與實驗結果作比較驗證,二種模式皆相當正確地預測臨界能量密度(Fc)的值,這對使用準分子雷射製作多晶矽薄膜製程是相當重要的結果。由於直接量測脈衝雷射作用於矽薄膜的表面溫度與反射率的困難,本文以巨觀模式計算的矽薄膜表面反射率及以巨微觀模式計算的矽薄膜表面溫度與反射率和實驗量測比較分析,發現計算的結果合理地接近實驗結果,因此使用本文的模式分析可成功預測矽薄膜表面溫度與反射率變化,亦將節省實驗所需的人力與經費。製程中,不同熱緩衝層材料與薄膜之結構對工件溫度場的影響在文中一併探討。此部份之具體分析結果詳述於結論中,將有助於多層膜結構之設計與合適實驗工作條件的選擇。最後,本論文應用巨微觀模式具體分析矽薄膜之結晶成核成長問題並與實驗比對,除了可以正確求得Fc的值,並可成功預測矽薄膜於部份熔融與接近完全熔融區域之平均晶粒尺寸與熔化期間。驗證了在部份熔融與接近完全熔融區域,當能量密度愈大時(熔化期間愈長),雷射照射之後的冷卻率會相對較低,過冷值與成長速率則相對較小,因此會使得晶粒密度相對較低,相對會產生較大的晶粒尺寸。由此可知,平均晶粒尺寸在部份熔融與接近完全熔融區域主要受過冷值與成長速率因素影響。本文並探討在完全熔融區域,均質成核與平均晶粒尺寸的關係,使用本文提出的均質成核數代入巨微觀模式計算,可成功預測矽薄膜於完全熔融區域之平均晶粒尺寸。
In this dissertation, the macro and macro-micro models are built to analyze the heat-transfer, solidification, nucleation and growth on the fabrication of poly-Si thin films using excimer laser crystallized technology. In these two models, the pulse energy of laser is treated as the source term in the energy equation, and the effective specific heat-enthalpy method and the source term scheme are used to handle the absorption and release of latent heat. For the macro-micro model, the classical nucleation theory and the interface response function are used to handle the nucleation and growth stages, respectively. The two-step Close-Pack model is applied in the impingement stage. The numerical method is finite difference method. Three main regimes are defined based on the energy density of laser and the melting state of Si thin films according to the fabrication of poly-Si thin films using excimer laser crystallized technology: partial, near complete, and complete melting. They can then define a critical fluence at near complete melting, which has been identified as the full-melt threshold (Fc). Largest grains are obtained at this Fc value. From the numerical analysis of maximum temperature and melt depth for different laser fluences, the threshold corresponding to the full melting of the Si film can be found. These critical fluences (full-melt threshold, Fc) obtained from the simulated results of the proposed two models agree fairly well with those from the experimental ones reported in the literature. The proposed two models could successfully predict the Fc which is important for the fabrication of poly-Si thin films using excimer laser crystallized technology. The surface temperature and reflectivity of silicon thin films after laser radiation are difficult to measure directly. In this work, the surface temperature of silicon films is numerically predicted from the macro model and this surface temperature and reflectivity of silicon films are also numerically computed via the macro-micro model. They agree reasonably well with those obtained from the experiments reported in the literature. Accordingly, our proposed models could successfully predict the surface temperature and reflectivity of silicon thin films. This approach then reduces manpower and expenditure of experiments. In addition, the effect of different buffer layers and the structure of thin films are also studied. The results are useful for the design of multi-layer structure and choices of feasible working conditions. They are reported in the conclusions. Eventually, the nucleation and growth of silicon thin films are analyzed by using the macro-micro model. The computed results are consistent with the experimental ones reported in the literature. In addition to Fc, the macro-micro model allows the accurate prediction of average grain sizes and melting duration of silicon thin films in the partial and near complete melting regimes. From the computational results, it can be verified that when the laser fluence is higher (the melting duration is longer), the cooling rate after laser irradiation is lower, the undercooling and growth velocity are smaller and the grain size is larger or the grain density is lower. Consequently, the average grain sizes are strongly dependent on the undercooling and growth velocity in the partial and near complete melting regimes. The relationship between homogeneous nucleation and average grain sizes in the complete melting regime are also investigated, and the homogeneous nucleation is applied in the macro-micro model. This proposed model could successfully predict the average grain sizes in the complete melting regime.
1. S. O. Kasap, “Principle of Electrical Engineering Materials and Devices,” 2nd ed., McGraw-Hill Company, New York, USA, 2002.
2. M. Balkanski and R. F. Wallis, “Semiconductor Physics and Applications,” Oxford University Press Inc., New York, USA, 2000.
3. W. C. Yeh, “Study of Excimer-Laser-Processed Polycrystalline-Silicon Thin-Film Solar Cells,” Ph.D. thesis, Department of Physical Electronics, Tokyo Institute of Technology, Japan, 2000.
4. E. Fujii, K. Senda, F. Emoto, A. Yamamoto, A. Nakamura, Y. Uemoto and G. Kano, “A Laser-recrystallization Technique for Silicon-TFT Integrated Circuits on Quartz Substrates and Its Application to Small-size Monolithic Active-matrix LCD’s,” IEEE Transactions on Electron Devices, Vol. 37, pp. 121-127, 1990.
5. N. D. Young, G. Harkin, R. M. Bunn, D. J. McCulloch and I. D. French, “The Fabrication and Characterization of EEPROM Arrays on Glass Using a Low Temperature Poly-Si TFT Process,” IEEE Transactions on Electron Devices, Vol. 43, pp. 1930-1936, 1996.
6. G. K. Giust and T. W. Sigmon, “High-Performance Thin-Film Transistors Fabricated Using Excimer Laser Processing and Grain Engineering,” IEEE Transaction on Electron Devices, Vol. 45, pp. 925-932, 1998.
7. G. K. Giust and T. W. Sigmon, “Laser-Processed Thin-Film Transistors Fabricated from Sputtered Amorphous-Silicon Films,” IEEE Transaction on Electron Devices, Vol. 47, pp. 207-213, 1998.
8. Aaron Marmorstein and Apostolos T. Voutsas, “A Systematic Study and Optimization of Parameters Affecting Grain Size and Surface Roughness in Excimer Laser Annealed Polysilicon Thin Films,” J. Appl. Phys., Vol. 82, pp. 1, 1997.
9. H. Kakinuma, M. Mohri and T. Tsuruoka, “Mechanism of Low-Temperature Polycrystalline Silicon Growth from a SiF4/SiH4/H2 Plasma,” J. Appl. Phys., Vol. 77, pp. 646-652, 1995.
10. W. G. Hawkins, “Polycrystalline-Silicon Device Technology for Large-Area Electronics,” IEEE Transaction on Electron Devices, Vol. ED-33, pp. 477-481, 1986.
11. T. Matsuyama, N. Terada, T. Baba, T. Sawada, S. Tsuge, K. Wakisaka and S. Tsyda, “High-quality Polycrystalline Silicon Thin Film Prepared by a Solid Phase Crystallization Method,” Journal of Non-Crystalline Solids, Vol. 198-200, pp. 940-944, 1996.
12. Hiroyuki Kuriyama and Takashi Kuwahara, “Improving the Uniformity of Poly-Si Films Using a New Excimer Laser Annealing Method for Giant-microelectronics,” Jpn. J. Appl. Phys, Vol. 31, pp. 4550-4554, 1992.
13. Kenji Sera, Fujio Okumura, Hiroyuki Uchida, Shinji Itoh, Setsuo Kaneko and Kazuaki Hotta, “High-Performance TFT’s Fabricated by XeCl Excimer Laser Annealing of Hydrogenated Amorphous-silicon Film,” IEEE Transactions on Electron Devices, Vol.36, pp. 2868-2872, 1989.
14. Hiroyuki Kuriyama and Takashi Kuwahara, “Improving the uniformity of poly-Si films using a new excimer laser annealing method for giant-microelectronics,” Jpn. J. Appl. Phys., Vol. 31, pp. 4550-4554, 1992.
15. Do-Hyun Choi, Eiichi Sadayuki, Osamu Sugiura and Masakiyo Matsumura, “Lateral Growth of Poly-Si Film by Excimer Laser and Its Thin Film Transistor Application,” Jpn. J. Appl. Phys., Vol. 33, pp. 70-74, 1994.
16. W. Kurz and D. J. Fisher, “Fundament als of Solidification,” 4th ed., Trans Tech Publications, LTD, Switzerland, 1998.
17. M.C. Flemings, “Solidification Processing,” McGraw-Hill Book Company, New York, USA, 1974.
18. D.H. Choi, K. Shimizu, O. Sugiura and M. Matzumura, “Drastic Enlargement of Grain Size of Excimer-Laser-Crystallized Poly-silicon Films,” Jpn. J. Appl. Phys., Vol. 31, pp. 4545-4549, 1992.
19. J. S. Im, R. S. Sposill and M. A. Crowder, “Single-crystal Si Films for Thin-Film Transistor Devices,” Appl. Phys. Lett., Vol. 70, pp. 3434-3436, 1997.
20. H. J. Kim and J. S. Im, “New Eccimer-Laser-Crystalliation Method for Producing Large-Grained and Grain Boundary-Location-Controlled Si Film Transistors,” Appl. Phys. Lett., Vol. 68, pp. 1513-1515, 1996.
21. K. Ishikaw, M. Ozawa, C.H. Oh and M. Matsumura, “Excimer-Laser-Induced Lateral-Growth of Silicon Thin-Films,” Jpn. J. Appl. Phys., Vol. 37, pp. 731-736, 1998.
22. G. Aichmayrs, D. Toet, M. Mulato, P. V. Santos, A. Spangenberg, S. Christiansen, M. Albrecht and H. P. Strunk, “Lateral Grain Growth during the Laser Interface Crystallization of a-Si,” Phys. Stat. Sol. (a), Vol. 166, pp. 659-666, 1998.
23. C.H. Oh, M. Ozawa and M. Matsumura, “A Novel Phase-Modulated Excimer-Laser Crystallization Method of Silicon Thin Films,” Jpn. J. Appl. Phys., Vol. 37, pp. L492-L495, 1998.
24. J.S. Im, H.J. Kim and M.O. Thompson, “Phase transformation mechanisms involved in excimer laser crystallization of amorphous sillicon films,” Appl. Phys. Lett., Vol. 63, pp. 1969-1971, 1993.
25. Mutsuko Hatano, Seungjae Moon, Minghong Lee, Kenkichi Suzuki and Costas P. Grigoropoulos, “ In Situ and Ex Situ Diagnostics on Melting and Resolidification Dynamics of Amorphous and Polycrystalline Silicon Thin Films during Excimer Laser Annealing,” Journal of Non-Crystalline Solids, Vol. 266-269, pp. 654-658, 2000.
26. P. Ch. Van Der Wilt and R. Ishihara, “ Grain Location Control in Excimer-Laser Crystallization of Thin Silicon Films,” Phys. Stat. Sol.(a), Vol. 166, pp. 619-627, 1998.
27. Jae-Hong Jeon, Kee-Chan Park, Min-Cheol Lee and Min-Koo Han, “ Two-Step Laser Recrystallization of Poly-Si for Effective Control of Grain Boundaries,” Journal of Non-Crystalline Solids, Vol. 266-269, pp. 645-649, 2000.
28. S. Loreti, D. della Sala and M. Garozzo, “ Morphological and Structural Effects of Excimer Laser Treatment of Amorphous Silicon,” Micron, Vol. 31, pp. 299-307, 2000.
29. M. Nerding, S. Christiansen, J. Krinke, R. Dassow, J. R. Kohler, J.-H. Werner and H.-P. Strunk, “ Grain Populations in Laser-Crystallised Silicon Thin Films on Glass Substrates,” Thin Solid Films, Vol. 383, pp. 110-112, 2001.
30. 陳毓儒, “低溫多晶矽薄膜製程之研究”, 國立成功大學工程科學系研究所碩士論文, 2004。
31. K. Shimizu, S. Imai, O. Sugiura and M. Matsumura, “Transiant Temperature Profiles in Silicon Films during Pulsed Laser Annealing,” Jpn. J. Appl. Phys., Vol. 30, pp. 2664, 1991.
32. S. Chen and C. P. Grigoropoulos, “Noncontact nanosecond-time-resolution temperature measurement in excimer laser heating of Ni–P disk substrates,” Appl. Phys. Lett., Vol. 71, pp. 3191, 1997.
33. M. Hatano, S. Moon and M. Lee, “Excimer laser-induced temperature field in melting and resolidification of silicon thin films,” Journal of Applied Physics Vol. 87, pp. 36-43, 2000.
34. C. P. Grigoropoulos, S. Moon, M. Lee, M. Hatano and K. Suzuki, “Thermal transport inmelting and recrystallization of amorphous and polycrystalline Si thin films,” Appl. Phys. A., Vol. 69, pp. s295-s298, 1999.
35. H. Kuriyama, S. Kiyama, S. Noguchi, T. Kuwanara, S. Ishida, T. Nohda, K. Sano, H. Iwata, H. Kawata, M. Osumi, S. Tsuda, S. Nakano and Y. Kuwano, “Enlargement of Poly-Si Film Grain Size by Excimer Laser Annealing and Its Application to High-Performance Poly-Si Thin Film Transistor,” Japanese Journal of Applied Physics, Vol. 30, pp. 3700-3703, 1991.
36. J. Viatella, S. Lee and R. Singh, J. Electrochem. Soc., Vol. 146, pp. 4605, 1999.
37. P. Baeri, S. Campisano, G. Foti and E. Rimini, J. Appl. Phys., Vol. 50, pp. 788, 1979.
38. 張建宏, “多晶矽薄膜製程之研究”, 國立成功大學工程科學系研究所碩士論文, 2002。
39. C. H. Chang and L. S. Chao, “Modeling Analysis of Excimer Laser Crystallization of a-Si films with Nanosecond Temperature Response,” Materials Science Forum, Vols. 505-507, pp. 283-288, 2006.
40. Yu-Ru Chen, Chien-Hung Chang and Long-Sun Chao, “Modeling and experimental analysis in excimer-laser crystallization of a-Si films,” Journal of Crystal Growth, Vol. 303, pp. 199-202, 2007.
41. Yu-Ru Chen, Chien-Hung Chang and Long-Sun Chao, “Modeling and Experimental Analysis in Excimer-Laser Crystallization of Amorphous Si Films on a Glass Substrate with Different Buffer Layers,” J. Am. Ceram. Soc., Vol. 90, pp. 688-692, 2007.
42. T. Kudo, D. Ichishima and C. G. Jin, “Simulation of Polycrystalline Silicon Growth by Pulsed Excimer Laser Annealing,” Mat. Res. Soc. Symp, Vol. 617, pp. J1.6.1-J1.6.6, 2000.
43. K. A. Jackson and B. Chalmers, Can. J. Phys., 34, pp. 473, 1956.
44. K. A. Jackson, “Crystal Growth and Characterization,” North-Holland, Amsterdam, pp. 21-32, 1975.
45. Rappaz. M., “Modeling of Microstructure Formation in Solidification Process,” International Material Review, Vol. 34, pp. 93-123, 1989.
46. 林盈佐“凝固顯微組織與模式分析”, 國立成功大學工程科學系研究所碩士論文,1998。
47. Biswajit Basu and J. Srinivasan, “Numerical study of steady-state laser melting problem,” Int. J. Heat Mass Transfer, Vol. 31, pp. 2331-2338, 1988.
48. D. G. David, “Modeling the Microstructure Development in Grey Iron Casting,” Ph. D. thesis, University of Illinois at Urbana-Champaign, Illinois, USA, 1991.
49. W. Oldfield, “A quantitative approoach to casting solidification: freezing of cast iron,” Trans. Am. Soc., Vol. 59, pp. 945-960, 1966.
50. H. Fredikisson and I. L. Sevensson, “Computer simulation of the structure formed during solidification of cast iron,” H. Fredriksson and M. Hillert Eds., North-Holland, New York, U.S.A., 1984.
51. D. M. Stefanescu and C. Kanetkar, “Computer modeling of the solidfication of eutectic alloys, the cast of cast iron,” D. J. Srolovitz Ed., The Metallurgical Society, Warrendale, PA, U.S.A., 1985.
52. K. C. Su, I. Ohnaka, I. Yaunauchi and T. Fukusako, “Computer simulation of solidification of nodular cast iron,” H. Fredriksson and M. Hillert Eds., North-Holland, New York, NY, U.S.A., 1984.
53. 杜武昌, “微觀之凝固模式分析”, 國立成功大學工程科學系研究所碩士論文,1995.
54. P. Thevoz, J. L. Desbiolles and M. Rappaz, “Modeling of Equiaxed Microstructure Formation in Casting,” Metallurgical Transactions A, Vol. 20A, pp. 311, 1989.
55. F. N. Rhines, K. R. Craig and D. A. Rousse, “Measurement of Average Grain Volume and Certain Topological Parameters by Serial Section Analysis,” Metallurgically Transactions A, Vol. 7A, pp. 1729, 1976.
56. M. Rappaz and P. Thevoz, “Solute Diffusion-Model for equiaxed dendritic growth,” Acta Metallurgica, Vol. 35, pp. 2929, 1987.
57. M. Rappaz, S. A. David, J. M. Vitek and L. A. Boatner, “Analysis of Solidification Microstructures in Fe-Ni-Cr Single-Crystal Welds,” Metallurgical Transactions A, Vol. 21A, pp. 1729, 1990.
58. M. Rappaz and C. A. Gandin, “Probabilistic Modeling of Microstructure Formation In Solidification Process,” Acta Metall., Vol. 41, pp. 345, 1993.
59. C. A. Gandin, M. Rappaz and R. Tintillier, “Three-Dimensiona Probabilistic Simulation of Solidification Grain Structures Application to Superalloy Precision Castings,” Metallurgical Transactions A, Vol. 24A, pp. 467, 1984.
60. M. Rappaz, “Modeling of microstructure formation in solidification processes,” International Materials Reviews, Vol. 34, pp. 93-123, 1989.
61. J. S. Hsiao, “An Efficient Algorithm for Finite Difference Analysis of Heat Transfer with Melting and Solidification,” Numerical Heat Transfer, Vol. 8, pp. 653-666, 1985.
62. A. W. Date, “A Strong Enthalpy Formulation for the Stefan Problem,” International Journal of Heat and Mass Transfer, Vol. 34, pp. 2231-2283, 1991.
63. V. R. Voller and C. R. Swa, “General source based method for solidfication phase change,” Numerical Heat Transfer, Part B, Vol. 19, pp. 175-189, 1991.
64. T. C. Tszeng, Y. T. Im and S. Kobayashi, “Thermal analysis of solidfication by the temperature rycovery method,” Int. J. Mach. Tools Manufact., Vol. 29, pp. 107-120, 1989.
65. J. A. Dantzig, “Modeling liquid-solid phase changes with melt convection,” International Journal of Numerical Methods in Engineering, Vol. 28, pp. 1769-1785, 1989.
66. H. Endert, M. Kauf, D. Basting, “High Power Excimer Laser for Low Temperature Poly-Si Annealing,” SID, San Jose, CA. pp. 18-20, 1999.
67. C. H. Chang and L. S. Chao, “Modeling analysis of melting and solidifying processes in excimer laser crystallization of a-Si films with effective specific heat-enthalpy method,” International Communications in Heat and Mass Transfer, Vol. 35, pp. 571-576, 2008.
68. R. Siegel and J. R. Howell, “Thermal Radiation Heat Transfer,” McGraw-Hill Book Company, New York, USA, 1972.
69. B. S. Yilbas, “Laser Heating Process and Experimental Validation,” Int. J. Heat Mass Transfer, Vol. 40, pp. 1131, 1997.
70. W. Kurz and R, Trivedi, “Recent Advances in Modeling of Solidification Microstructure,” The Institute of Metals, London, pp. 1, 1988.
71. J. Zou and M. Rappaz, “Experiment and Modelling of Grey Cast Iron Solidification Part II: unidirectionally solidified castings,” Material Processing in the Computer Age, pp. 349. V.R. Voller, M.S. Stachowicz, and B.G. Thomas Eds. The Minerals, Metals and Materials Society, Warrendale, PA, U.S.A, 1991.
72. J. W. Gibbs, “The Scientific Papers of J. W. Gibbs,” Dover Publications, New York, 1961.
73. M. Volmer and A. Weber, Z. Phys. Chem, Vol. 119, pp. 277, 1925.
74. R. Becker and W. Doring, Ann. Phys, Vol. 24, pp. 719, 1935.
75. D. Turnbull and J. C.Fisher, J. Chem. Phys, Vol. 17, pp. 71, 1949.
76. A. K. Jena and M. C. Chaturvedi, “Phase Transformation in Materials,” Prentice Hall, New Jersey, 1992.
77. R.F. Wood and G.A. Geist, Phys. Rev. B, Vol. 34, pp. 2606, 1986.
78. J.Q. Broughton and X.P. Li, Phys. Rev. B, Vol. 35, pp. 9120, 1987.
79. S.R. Stiffler, P.V. Evans and A.L. Greer, Acta Metall. Mater., Vol. 40, pp. 1617, 1992.
80. P.H. Bucksbaum and J. Bokor, Phys. Rev. Lett., Vol. 53, pp. 182, 1984.
81. J. Perriere, E. Millon and E. Fogarassy, “Recent Advances in Laser Processing of Materials,” Materials Science Elsevier Limited, UK.
82. H. Kisdarjono, A. T. Voutsas, and R. Solanki, “Three-dimensional simulation of rapid melting and resolidification of thin Si films by excimer laser annealing,” Journal of Applied Physics, Vol. 94, pp. 4374-4381, 2003.
83. C. W. Price, “Simulations of Grain Impingement and Recrystallization Kinetics,” Acta Metall., Vol. 35, pp. 1377, 1987.
84. M. Avrami, “Kinetics of Phase Change II, Thansformation Time Relations for Random Distribution of Nuclei,” Journal of Chemical Physics, Vol. 8, pp. 212, 1940.
85. P. Alexandre, M. Castro and M. Rappaz, “Finite element modeling of spheroidal graphite cast iron microstructure formation,” Modeling of Casting ,Welding and Advanced Solidification Processes V. The Minerals, Metals and Materials Society, Warrendale, Pa, U.S.A., 1991.
86. D. A. Anderson, J. C. Tannehill and R. H. Pletcher, “Computational Fluid Mechanics and Heat Transfer,” Hemisphere, Washington D.C., U.S.A., 1984.
87. H. S. Carslaw and J. C. Jaeger, “Conduction of Heat in Solids,” 2nd ed., Oxford at the Clarendon Press, pp. 282-283, 1959.