簡易檢索 / 詳目顯示

研究生: 鄭伃倩
Cheng, Yu-Chien
論文名稱: 利用雙極多迴訊序列分解水與脂肪進行磁場和R2*的測量
Simultaneous water and fat decomposition with R2* and field map estimation using bipolar multiecho sequence
指導教授: 趙梓程
Chao, Tzu-Cheng
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 醫學資訊研究所
Institute of Medical Informatics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 63
中文關鍵詞: 水與脂肪分解T2*R2*腹部
外文關鍵詞: water and fat decomposition, T2*, R2*, abdomen
相關次數: 點閱:69下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究為利用雙極多迴訊序列收取多迴訊影像,並搭配T2* IDEAL方法,分解水與脂肪訊號以及磁場和T2*值。多迴訊脈衝序列依照收取資料時的編碼可以分為單極多迴訊序列與雙極多迴訊序列。一般而言雙極多迴訊序列的迴訊間隔比單極多迴訊序列小,因此可縮短掃描時間,而此特性在需要閉氣的腹部磁場量化參數造影時可減少受檢者因閉氣所帶來的負擔。
    但是因為雙極多迴訊序列會因為渦電流以及梯度延遲造成相位差現象,所以本文提出一個修正相位差的校正方法,使其既可以縮短掃描時間,也可以配合T2* IDEAL方法,以利縮短人體所需的閉氣時間以及獲得正確的水與脂肪的分解和磁場與T2*值。本研究先於水和油水仿體上進行校正方法的可行性評估與T2* IDEAL方法的測試,接著再於人體腹部外圍放上水溶液試管作為校正基準,利用此水溶液試管來求出隨空間分布的相位差,再加以校正原始資料。由實驗結果可發現,本研究提出的方法能夠有效使用雙極多迴訊取得的資料進行水與脂肪分解並同時估算T2*弛緩常數與磁場。研究中亦同時發現到作為校正基準的水溶液試管需要在頻率編碼的方向佔據較大的範圍,才能獲得較正確的相位修正基礎,獲得較精準的T2* IDEAL方法的分解結果。

    This research aims at developing a method using data from a bipolar Multi-echo Gradient Echo sequence and T2* IDEAL to decompose the signal of water and fat with evaluation of field map and the value of T2*. Data acquisition for Multi-echo Gradient Echo sequence can be divided into two schemes, acquisition at the same gradient polarity (Unipolar multi-echo sequence) and acquisition with alternating gradient polarity (Bipolar multi-echo sequence). In general, the echo spacing of bipolar multi-echo sequence is smaller than the one of unipolar multi-echo sequence leading to shorter scan duration. And based on this fact, the burden of breath-hold duration will be eased when a subject undergoes to a MR protocol including a quantitative abdominal T2* evaluations.
    While bipolar multi-echo sequence has potential to shorten scan time, the phase difference caused by eddy current and gradient delay due to the alternating readout gradients becomes another critical problem. In this article, we propose a calibration method to amend the phase difference so as to prevent from registering the decomposed signal in T2* IDEAL erroneously. In addition, the corrected phase information should help to provide estimation in the water and fat composition as well as the T2* and field susceptibility with accuracy. Feasibility study of the proposed calibration method was firstly engaged in the phantom experiments with a water phantom and a composite oil-water phantom. And then, in human studies we included the water solution tube placed around the abdomen of a scanned subject as a calibration reference to estimate the spatially varied phase differences for correction. The results suggested that with the proposed calibration method, components including water and fat composition, the T2* value and the field strength can be evaluated properly from the acquired data using bipolar multi-echo sequence. In addition, we also discovered that the water solution tube as a calibration reference must be spatially distributed to cover a larger extent along the frequency encoding direction, so that the calibration method can extract adequate basis phase correction to have the decomposing result of T2* IDEAL method more precisely.

    摘要 i Abstract ii 誌謝 v 目錄 vi 圖片目錄 vii 表格目錄 ix 第一章 介紹 1 第二章 理論與方法 8 2.1 資料蒐集 9 2.2 相位校正 9 2.3 線圈合併(Coil Combination) 17 2.4 T2* IDEAL 21 2.5 實驗設計 23 2.5.1 水仿體 23 2.5.2 油水仿體 23 2.5.3 人體 24 第三章 結果 26 3.1 水仿體 26 3.2 油水仿體 31 3.3 人體 35 第四章 討論 47 第五章 結論 61 參考文獻 62

    1. Sirlin, C.B. and S.B. Reeder, Magnetic resonance imaging quantification of liver iron. Magn Reson Imaging Clin N Am, 2010. 18(3): p. 359-81, ix.
    2. Virtanen, J.M., M.E. Komu, and R.K. Parkkola, Quantitative liver iron measurement by magnetic resonance imaging: in vitro and in vivo assessment of the liver to muscle signal intensity and the R2* methods. Magn Reson Imaging, 2008. 26(8): p. 1175-82.
    3. Ropele, S., et al., MRI assessment of iron deposition in multiple sclerosis. J Magn Reson Imaging, 2011. 34(1): p. 13-21.
    4. Wood, J.C., et al., MRI R2 and R2* mapping accurately estimates hepatic iron concentration in transfusion-dependent thalassemia and sickle cell disease patients. Blood, 2005. 106(4): p. 1460-5.
    5. Wood, J.C., Impact of iron assessment by MRI. Hematology Am Soc Hematol Educ Program, 2011. 2011: p. 443-50.
    6. Yu, H., et al., Multiecho reconstruction for simultaneous water-fat decomposition and T2* estimation. J Magn Reson Imaging, 2007. 26(4): p. 1153-61.
    7. Glover, G.H. and E. Schneider, Three-point Dixon technique for true water/fat decomposition with B0 inhomogeneity correction. Magn Reson Med, 1991. 18(2): p. 371-83.
    8. Reeder, S.B., et al., Iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL): application with fast spin-echo imaging. Magn Reson Med, 2005. 54(3): p. 636-44.
    9. Dixon, W.T., Simple proton spectroscopic imaging. Radiology, 1984. 153(1): p. 189-94.
    10. Ma, J., Dixon techniques for water and fat imaging. J Magn Reson Imaging, 2008. 28(3): p. 543-58.
    11. Coombs, B.D., J. Szumowski, and W. Coshow, Two-point Dixon technique for water-fat signal decomposition with B0 inhomogeneity correction. Magn Reson Med, 1997. 38(6): p. 884-9.
    12. Reeder, S.B., et al., Water-fat separation with IDEAL gradient-echo imaging. J Magn Reson Imaging, 2007. 25(3): p. 644-52.
    13. Chebrolu, V.V., et al., Independent estimation of T*2 for water and fat for improved accuracy of fat quantification. Magnetic Resonance in Medicine, 2010. 63(4): p. 849-857.
    14. Yu, H., et al., Phase and amplitude correction for multi-echo water–fat separation with bipolar acquisitions. Journal of Magnetic Resonance Imaging, 2010. 31(5): p. 1264-1271.
    15. Lu, W., et al., Water-fat separation with bipolar multiecho sequences. Magn Reson Med, 2008. 60(1): p. 198-209.
    16. Chapter 10 - Correction Gradients, in Handbook of MRI Pulse Sequences, M.A. Bernstein, K.F. King, and X.J. Zhou, Editors. 2004, Academic Press: Burlington. p. 292-362.
    17. Robinson, S., et al., Combining phase images from multi-channel RF coils using 3D phase offset maps derived from a dual-echo scan. Magn Reson Med, 2011. 65(6): p. 1638-48.
    18. Hammond, K.E., et al., Development of a robust method for generating 7.0 T multichannel phase images of the brain with application to normal volunteers and patients with neurological diseases. NeuroImage, 2008. 39(4): p. 1682-1692.
    19. Chen, L., et al., An efficient algorithm for automatic phase correction of NMR spectra based on entropy minimization. Journal of Magnetic Resonance, 2002. 158(1–2): p. 164-168.
    20. Bellon, E.M., et al., MR artifacts: a review. AJR Am J Roentgenol, 1986. 147(6): p. 1271-81.

    無法下載圖示 校內:2019-08-27公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE