| 研究生: |
陳姵珊 Chen, Pei-Shan |
|---|---|
| 論文名稱: |
酸鹼敏感型聚胺基酸水膠:特性探討及仿生多孔性複合材料之合成 pH-Sensitive Polypeptide Hydrogels: Characterization and Biomimetic Synthesis of Porous Oxides |
| 指導教授: |
詹正雄
Jan, Jeng-Shiung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | 聚胺基酸 、水膠 、複合材料 、交聯 、仿生合成 、二氧化矽 |
| 外文關鍵詞: | polypeptide, hydrogels, hybrid materials, crosslink, biomimetic synthesis, porous silica |
| 相關次數: | 點閱:144 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究是利用聚胺基酸高分子(polypeptide)上的胺基與交聯劑(genipin)進行反應後製備出具有酸鹼敏感型的水膠,藉由改變聚胺基酸高分子的分子量、親疏水鏈段比、聚胺基酸溶液濃度以及加入交聯劑與高分子的莫耳數比進行調控和探討水膠物理性質的變化,並可利用仿生合成方法進行有機/無機複合材料的製備,最後將有機物質經由鍛燒去除可得到仿生多孔性的二氧化矽。
在第一部分的研究中,我們控制胺基酸的分子量及親疏水鏈段比再經由開環聚合後就可得到聚胺基酸高分子,接著再加入交聯劑於聚胺基酸溶液中即可製備出聚胺基酸水膠。藉由交聯時間及膨潤比測量、機械強度以及生物毒性測試、FTIR和SEM來瞭解聚胺基酸水膠的物理性質,並做進一步的探討。從交聯時間及機械強度的結果中發現聚胺基酸的分子量、親疏水鏈段比、聚胺基酸溶液濃度以及交聯劑莫耳數比皆會影響物理性質;由FTIR中可發現聚胺基酸高分子經過交聯反應後二級結構會有些許的改變;由SEM可觀察到水膠的結構是具有高孔洞性及孔洞大小約為10~30 μm;膨潤比的結果可得知聚胺基酸水膠的膨潤比會隨酸鹼值不同而有改變;材料生物毒性的測試說明聚胺基酸經過交聯反應後可提高細胞的存活率。
第二部分的研究是利用仿生合成方法進行製備聚胺基酸-二氧化矽之有機/無機複合水膠材料。由TGA結果顯示控制矽化作用時間可得到不同有機/無機含量的複合材料;從FTIR的結果中可確定有二氧化矽的形成;在機械強度測試中可知聚胺基酸-二氧化矽複合水膠材料的強度會隨著矽化作用時間增加而下降;而聚胺基酸-二氧化矽複合水膠材料經由生物毒性測試後可得知此材料對於纖維母細胞來說是不具有生物毒性,故此新穎複合材料極具有潛力可應用於蛋白質/藥物的包覆及傳輸,以及組織工程中;最後再經由鍛燒後的TEM及BET結果可得知二氧化矽是具有多孔性的結構,且此孔洞大小的主要分布是介於2~10 nm。
In this study, pH-sensitive polypeptide hydrogels were prepared by using genipin to crosslink amine groups on polypeptide. We investigated the influence of the molecular weight of polypeptide, ratio of hydrophilic and hydrophobic segments, polypeptide solution concentration and molar ratio of genipin and polypeptide on the properties of the as-prepared hydrogels. The polypeptide-silica organic/inorganic hybrid materials can be prepared using biomimetic synthesis approach. According to our study, the obtained silicas after calcination were porous.
In the first part, homopolypeptides and amphiphilic block copolypeptides with different molecular weights or block ratios were via the ring-opening polymerization and genipin was used to crosslink these polypeptides in aqueous solution to form hydrogels. The properties of as-prepared hydrogels were characterized by a variety of analytical techniques including gelation time and swelling ratio measurements, compression and cytotoxicity tests, FTIR, and SEM. The results show that the gelation time and compressive modulus were influenced by the molecular weight, block ratio, polypeptide concentration, and the molar ratio of genipin and polypeptide. FTIR analysis revealed that the polypeptides underwent conformational changes after crosslinking reaction. The structure of hydrogels was found to be highly porous with sizes between 10 and 30 μm by SEM characterization. The degree of swelling was found to vary with the solution conditions (that is, pH value). The cytotoxicity tests suggested that the genipin-crosslinked polypeptide hydrogels can enhance the cell viability comparing with the polypeptides without crosslinking.
The second part demonstrated that the polypeptide-silica organic/inorganic hybrid materials can be prepared using biomimetic synthesis approach. TGA analysis showed that the weight ratio of the organic and inorganic compounds in the hybrid materials can be controlled by varying the silification time. FTIR analysis revealed that the covalent bond formation between polypeptide and silica. The compressive strength of polypeptide-silica hydrogel was decreased with increasing the silification time. The as-prepared hybrid materials were found to be not cytotoxic to fibroblast cells, so these novel hybrid materials have potential applications including protein/drug delivery, encapsulation, and tissue engineering. Based on TEM and BET characterization, the silicas obtained by calcination were to found be highly porous with sizes mainly between 2 and 10 nm.
1. M. Kawabuchi, T. Okano, M. Sugihara, Journal of the Japan Pharmaceutical Association 1995, 47, 1611-1618.
2. G. Khang, J. M. Rhee, J. K. Jeong, J. S. Lee, M. S. Kim, S. H. Cho, H. B. Lee, Macromolecular Research 2003, 11, 207-223.
3. T. Moritera, Y. Ogura, Y. Honda, R. Wada, S. H. Hyon, Y. Ikada, Folia Ophthalmologica Japonica 1990, 41, 425-426.
4. R. L. Dunn, in Biomedical applications of synthetic biodegradable polymers, CRC Press, Inc.; CRC Press, 1995, pp. 17-31.
5. A. Shikanov, N. Kumar, A. J. Domb, Israel Journal of Chemistry 2005, 45, 393-399.
6. S. A. Barenberg, Journal of Biomedical Materials Research 1988, 22, 1267-1291.
7. X. Jia, K. L. Kiick, Macromolecular Bioscience 2009, 9, 140-156.
8. J. J. Schmidt, J. Rowley, H. J. Kong, Journal of Biomedical Materials Research Part A 2008, 87A, 1113-1122.
9. S. Banta, I. R. Wheeldon, M. Blenner, Annual Review of Biomedical Engineering 2010, 12, 167-186.
10. G. Georgiou, E. D. Bernardez-Clerk, American Chemical Society 1991, 1-49.
11. E. Kaiser, F. Kezdy, Science 1984, 223, 249-255.
12. T. A. Keiderling, Current Opinion in Chemical Biology 2002, 6, 682-688.
13. J. T. Carl Branden, Garland: New York 1999.
14. P. D. Bailey, John Wiley&Sons 1991, 240.
15. O. Wichterle, D. Lim, Nature 1960, 185, 117-118.
16. R. W. Korsmeyer, 1991, Polymers for controlled drug delivery, CRC press, Chapter 2.
17. A. P. Nowak, V. Breedveld, L. Pakstis, B. Ozbas, D. J. Pine, D. Pochan, T. J. Deming, Nature 2002, 417, 424-428.
18. X.-Z. Zhang, D.-Q. Wu, C.-C. Chu, Biomaterials 2004, 25, 3793-3805.
19. R. Dinarvand, A. D'Emanuele, Journal of Controlled Release 1995, 36, 221-227.
20. W. Liu, B. Zhang, W. W. Lu, X. Li, D. Zhu, K. De Yao, Q. Wang, C. Zhao, C. Wang, Biomaterials 2004, 25, 3005-3012.
21. R. Salgado-Rodriguez, A. Licea-Claverie, K. F. Arndt, European Polymer Journal 2004, 40, 1931-1946.
22. L. Brannon-Peppas, N. A. Peppas, Biomaterials 1990, 11, 635-644.
23. K. Ishihara, I. Shinohara, Journal of Polymer Science: Polymer Letters Edition 1984, 22, 515-518.
24. J. Ostroha, M. Pong, A. Lowman, N. Dan, Biomaterials 2004, 25, 4345-4353.
25. P. J. Flory, J. J. Rehner, The Journal of Chemical Physics 1943, 11, 521-526.
26. P. J. Flory, 1953, Cornell University Press, Ithaca.
27. L. Brannon-Peppas, N. A. Peppas, Chemical Engineering Science 1991, 46, 715-722.
28. J. Hasa, M. Ilavský, K. Dušek, Journal of Polymer Science: Polymer Physics Edition 1975, 13, 253-262.
29. K. Dušek, W. Prins, in Fortschritte der Hochpolymeren-Forschung, Springer Berlin / Heidelberg, 1969, Vol. 6, pp. 1-102.
30. J. Ricka, T. Tanaka, Macromolecules 1984, 17, 2916-2921.
31. B. A. S. Fireston, Ronald A., Journal of Biomaterials Science, Polymer Edition 1994, 5, 433-450.
32. L. A. Estroff, A. D. Hamilton, Chemistry of Materials 2001, 13, 3227-3235.
33. E. Munch, M. E. Launey, D. H. Alsem, E. Saiz, A. P. Tomsia, R. O. Ritchie, Science 2008, 322, 1516-1520.
34. N. Poulsen, M. Sumper, N. Kroger, Proceedings of the National Academy of Sciences 2003, 100, 12075-12080.
35. J. Aizenberg, J. C. Weaver, M. S. Thanawala, V. C. Sundar, D. E. Morse, P. Fratzl, Science 2005, 309, 275-278.
36. C. Sanchez, H. Arribart, M. M. Giraud Guille, Nat Mater 2005, 4, 277-288.
37. M. Jensen, R. Keding, T. Hoche, Y. Yue, Journal of the American Chemical Society 2009, 131, 2717-2721.
38. J. N. Cha, K. Shimizu, Y. Zhou, S. C. Christiansen, B. F. Chmelka, G. D. Stucky, D. E. Morse, Proceedings of the National Academy of Sciences 1999, 96, 361-365.
39. S. Mann, Journal of Materials Chemistry 1995, 5, 935-946.
40. P. Judeinstein, C. Sanchez, Journal of Materials Chemistry 1996, 6, 511-525.
41. G.-H. Wang, L.-M. Zhang, The Journal of Physical Chemistry B 2006, 110, 24864-24868.
42. O. Mahony, O. Tsigkou, C. Ionescu, C. Minelli, L. Ling, R. Hanly, M. E. Smith, M. M. Stevens, J. R. Jones, Advanced Functional Materials 2010, 20, 3835-3845.
43. J.-T. Yeh, C.-L. Chen, K.-S. Huang, Materials Letters 2007, 61, 1292-1295.
44. S. S. Rashidova, D. S. Shakarova, O. N. Ruzimuradov, D. T. Satubaldieva, S. V. Zalyalieva, O. A. Shpigun, V. P. Varlamov, B. D. Kabulov, Journal of Chromatography B 2004, 800, 49-53.
45. E. C. Thomas, Proteins: structures and molecular properties. Editor, W.H. Freeman, 1993.
46. L. A. Estroff, A. D. Hamilton, Chemistry of Materials 2001, 13, 3227-3235.
47. N. Kroger, R. Deutzmann, M. Sumper, Science 1999, 286, 1129-1132.
48. N. Kroger, R. Deutzmann, C. Bergsdorf, M. Sumper, Proceedings of the National Academy of Sciences 2000, 97, 14133-14138.
49. N. Kroger, S. Lorenz, E. Brunner, M. Sumper, Science 2002, 298, 584-586.
50. R. R. Naik, P. W. Whitlock, F. Rodriguez, L. L. Brott, D. D. Glawe, S. J. Clarson, M. O. Stone, Chemical Communications 2003, 238-239.
51. M. Reches, E. Gazit, Science 2003, 300, 625-627.
52. M. Sumper, Science 2002, 295, 2430-2433.
53. K. J. C. Van Bommel, A. Friggeri, S. Shinkai, Angewandte Chemie International Edition 2003, 42, 980-999.
54. M. S. Wong, J. N. Cha, K.-S. Choi, T. J. Deming, G. D. Stucky, Nano Letters 2002, 2, 583-587.
55. J. S. Jan, D. F. Shantz, Advanced Materials 2007, 19, 2951-2956.
56. J.-S. Jan, S. Lee, C. S. Carr, D. F. Shantz, Chemistry of Materials 2005, 17, 4310-4317.
57. J.-S. Jan, T.-H. Chuang, P.-J. Chen, H. Teng, Langmuir 2011, 27, 2834-2843.
58. H. Menzel, S. Horstmann, P. Behrens, P. Barnreuther, I. Krueger, M. Jahns, Chemical Communications 2003, 2994-2995.
59. L. E. Euliss, S. G. Grancharov, S. O'Brien, T. J. Deming, G. D. Stucky, C. B. Murray, G. A. Held, Nano Letters 2003, 3, 1489-1493.
60. J.-S. Jan, D. F. Shantz, Chemical Communications 2005, 2137-2139.
61. K. M. Hawkins, S. S. S. Wang, D. M. Ford, D. F. Shantz, Journal of the American Chemical Society 2004, 126, 9112-9119.
62. J.-S. Jan, P.-J. Chen, Y.-H. Ho, Journal of Colloid and Interface Science 2011, 358, 409-415.
63. J. N. Cha, G. D. Stucky, D. E. Morse, T. J. Deming, Nature 2000, 403, 289-292.
64. H. Susi, S. N. Timasheff, L. Stevens, Journal of Biological Chemistry 1967, 242, 5460-5466.
65. M. Muller, R. Buchet, U. P. Fringeli, The Journal of Physical Chemistry 1996, 100, 10810-10825.
66. J.-C. Wu, Y. Wang, C.-C. Chen, Y.-C. Chang, Chemistry of Materials 2008, 20, 6148-6156.
67. C.-T. Yang, Y. Wang, S. Yu, Y.-C. I. Chang, Biomacromolecules 2008, 10, 58-65.
68. R. Maheshwari, N. Mukherjee, K. L. Kiick, S. J. Clarson, S. V. Patwardhan, Biomacromolecules 2006, 7, 491-497.
69. S. V. Patwardhan, N. Mukherjee, M. Steinitz-Kannan, S. J. Clarson, Chemical Communications 2003, 1122-1123.
70. F. Rodriguez, D. D. Glawe, R. R. Naik, K. P. Hallinan, M. O. Stone, Biomacromolecules 2004, 5, 261-265.
71. D. D. Glawe, F. Rodriguez, M. O. Stone, R. R. Naik, Langmuir 2004, 21, 717-720.
72. J. W. McBain, The Journal of Physical Chemistry 1933, 37, 149-150.
73. M. Estermann, L. B. McCusker, C. Baerlocher, A. Merrouche, H. Kessler, Nature 1991, 352, 320-323.
74. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature 1992, 359, 710-712.
75. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, Journal of the American Chemical Society 1992, 114, 10834-10843.
76. D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky, Science 1998, 279, 548-552.
77. P. Selvam, S. K. Bhatia, C. G. Sonwane, Industrial & Engineering Chemistry Research 2001, 40, 3237-3261.
78. P. Binger, M. J. Doyle, J. McMeeking, C. Krer, Y.-H. Tsay, Journal of Organometallic Chemistry 1977, 135, 405-414.
79. W. H. Daly, D. Poch, Tetrahedron Letters 1988, 29, 5859-5862.
80. J. Gaspard, J. A. Silas, D. F. Shantz, J. S. Jan, Supramolecular Chemistry 2010, 22, 178-185.
81. T. J. Deming, Nature 1997, 390, 386-389.
82. R. Jin, C. Hiemstra, Z. Zhong, J. Feijen, Biomaterials 2007, 28, 2791-2800.
83. N. Q. Tran, Y. K. Joung, E. Lih, K. M. Park, K. D. Park, Biomacromolecules 2010, 11, 617-625.
84. S. Brunauer, L. S. Deming, W. E. Deming, E. Teller, Journal of the American Chemical Society 1940, 62, 1723-1732.
85. G. Ertl, H. Knozinger, J. Weitkamp, Handbook of heterogeneous catalysis. Editor, VCH, 1997.
86. E. P. Barrett, L. G. Joyner, P. P. Halenda, Journal of the American Chemical Society 1951, 73, 373-380.
87. H. G. Sundararaghavan, G. A. Monteiro, N. A. Lapin, Y. J. Chabal, J. R. Miksan, D. I. Shreiber, Journal of Biomedical Materials Research Part A 2008, 87A, 308-320.
88. L.-P. Yan, Y.-J. Wang, L. Ren, G. Wu, S. G. Caridade, J.-B. Fan, L.-Y. Wang, P.-H. Ji, J. M. Oliveira, J. T. Oliveira, J. F. Mano, R. L. Reis, Journal of Biomedical Materials Research Part A 2010, 95A, 465-475.
89. T.-Y. Liu, S.-Y. Chen, Y.-L. Lin, D.-M. Liu, Langmuir 2006, 22, 9740-9745.
90. H. Chen, W. Ouyang, B. Lawuyi, S. Prakash, Biomacromolecules 2006, 7, 2091-2098.
91. S. L. Jahren, M. F. Butler, S. Adams, R. E. Cameron, Macromolecular Chemistry and Physics 2010, 211, 644-650.
92. R. A. A. Muzzarelli, Carbohydrate Polymers 2009, 77, 1-9.
93. T.-Y. Liu, Y.-L. Lin, Acta Biomaterialia 2010, 6, 1423-1429.
94. I.-C. Stancu, Reactive and Functional Polymers 2010, 70, 314-324.
95. V. Chiono, E. Pulieri, G. Vozzi, G. Ciardelli, A. Ahluwalia, P. Giusti, Journal of Materials Science: Materials in Medicine 2008, 19, 889-898.
96. C. W.-H. C. Y. L. P.-H. S. H-W., Journal of Biomaterials Science, Polymer Edition 2003, 14, 481-495.
97. C.-H. Yao, B.-S. Liu, C.-J. Chang, S.-H. Hsu, Y.-S. Chen, Materials Chemistry and Physics 2004, 83, 204-208.
98. F.-L. Mi, S.-S. Shyu, C.-K. Peng, Journal of Polymer Science Part A: Polymer Chemistry 2005, 43, 1985-2000.
99. O. Kambara, A. Tamura, A. Naito, K. Tominaga, Physical Chemistry Chemical Physics 2008, 10, 5042-5044.
100. S. Jia, B. Fan, Y. Dai, G. Wang, P. Peng, Y. Jia, Food Science and Biotechnology 2010, 19, 361-366.
101. A. M. S. Kai Griebenow, Karen G. Carrasquillo, The internet journal of vibrational spectroscopy 1999, 3.
102. M. Rozenberg, G. Shoham, Biophysical Chemistry 2007, 125, 166-171.
103. F. Boulmedais, P. Schwinte, C. Gergely, J. C. Voegel, P. Schaaf, Langmuir 2002, 18, 4523-4525.
104. F. Boulmedais, M. Bozonnet, P. Schwinte, J. C. Voegel, P. Schaaf, Langmuir 2003, 19, 9873-9882.
105. D. T. Haynie, S. Balkundi, N. Palath, K. Chakravarthula, K. Dave, Langmuir 2004, 20, 4540-4547.
106. M. Vargascortes, U. Hellstrom, P. Perlmann, Journal of Immunological Methods 1983, 62, 87-99.
107. P. Ferruti, S. Knobloch, E. Ranucci, R. Duncan, E. Gianasi, Macromolecular Chemistry and Physics 1998, 199, 2565-2575.
108. B. Mauersberger, C. U. V. Mickwitz, J. Zipper, J. Axt, G. Heder, Experimentelle Pathologie 1977, 13, 268-274.
109. J.-K. Lai, T.-H. Chuang, J.-S. Jan, S. S.-S. Wang, Colloids and Surfaces B: Biointerfaces 2010, 80, 51-58.