研究生: |
吳笙豪 Wu, Sheng-Hao |
---|---|
論文名稱: |
離子佈植應用於平面式氮化鎵輔助擴散發光二極體 InGaN-based Light-Emitting Diodes with Planar structure formed by Si ion implantation |
指導教授: |
許進恭
Sheu, Jinn-Kong |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 80 |
中文關鍵詞: | 離子佈植 、氮化鎵 、輔助擴散 、發光二極體 |
外文關鍵詞: | Ion implantation, gallium nitride, diffusion assisted, light-emitting diode |
相關次數: | 點閱:59 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文將選擇性離子佈植技術應用在氮化鎵發光二極體中,相較於傳統發光二極體,使多重量子井置於P-N junction外,形成N-P-MQW結構,並在不同元件尺寸與環境溫度下研究其光電特性與載子傳輸行為。
實驗上利用選擇性矽離子佈植技術是利用光阻當阻擋層來定義佈植區,透過此方式讓p-GaN轉換成n-GaN,並利用載子濃度差讓載子注入主動區。
從實驗結果來看離子佈植擴散輔助發光二極體隨著元件尺寸降低能提供更高的電流密度與亮度。由電致發光圖與光譜圖可證明載子能擴散注入到綠光量子井下的藍光量子井中。而在光型分佈中也發現隨著元件尺寸降低,電流壅擠現象獲得改善。在環境溫度部分,降溫過程光強度受非輻射復合機率下降與載子溢流彼此影響而互有變化,升溫過程受周圍環境溫度升高使載子溢流,使得光強度下降,但仍有部分上升是因為高能量載子飛過第一量子井在其餘量子井中複合所造成。
透過將元件面積縮小,縮短電極距離和載子擴散長度,載子輻射複合機率提升,因此改善光電特性,但效率衰減仍是離子佈植擴散輔助發光二極體需克服的問題。
In this paper, selective ion implantation technology is applied to gallium nitride light-emitting diodes. Compared with traditional light-emitting diodes, multiple quantum wells are placed outside the P-N junction to form an N-P-MQW structure and study its photoelectric characteristics and carrier transport behavior under different chip sizes and ambient temperatures. In experiments, the selective silicon ion implantation technology uses photoresist as a barrier layer to define the implantation area, converts p-GaN to n-GaN, and uses the carrier concentration difference to allow carriers to be injected into the active area. The experimental results show that the ion implantation diffusion assisted light emitting diode can provide higher current density and brightness as the chip size decreases. The electroluminescence and spectrogram can prove that carriers can be injected into the blue quantum well. In the light type distribution, it is also found that as the chip size decreases, the current crowding phenomenon is improved. In the ambient temperature part, the light intensity during the cooling process is affected by the decrease in the probability of non-radiative recombination and the carrier overflow. The heating process is affected by the increase in the ambient temperature and the carrier overflow, which causes the light intensity to decrease, but part of the increase is due to high-energy carriers fly through the first quantum well and recombine in the remaining quantum wells.
[1] P. Kivisaari, J. Oksanen, and J. Tulkki, "Current injection to free-standing III-N nanowires by bipolar diffusion," Applied Physics Letters, vol. 103, no. 3, p. 031103, 2013.
[2] P. Kivisaari, J. Oksanen, and J. Tulkki, "Diffusion-assisted current spreading for III-nitride light-emitting applications," in Gallium Nitride Materials and Devices VIII, 2013, vol. 8625: International Society for Optics and Photonics, p. 862528.
[3] P. Kivisaari, "From computational models to improved light-emitting diodes and new devices," 2014.
[4] L. Riuttanen et al., "Diffusion injected multi-quantum well light-emitting diode structure," Applied Physics Letters, vol. 104, no. 8, p. 081102, 2014.
[5] L. Riuttanen, P. Kivisaari, O. Svensk, J. Oksanen, and S. Suihkonen, "Electrical injection to contactless near-surface InGaN quantum well," Applied Physics Letters, vol. 107, no. 5, p. 051106, 2015.
[6] L. Riuttanen, P. Kivisaari, O. Svensk, J. Oksanen, and S. Suihkonen, "Diffusion injection in a buried multiquantum well light-emitting diode structure," IEEE Transactions on Electron Devices, vol. 62, no. 3, pp. 902-908, 2015.
[7] J.-K. Sheu et al., "n+-GaN formed by Si implantation into p-GaN," Journal of applied physics, vol. 91, no. 4, pp. 1845-1848, 2002.
[8] 王詩賢, "選擇性再成長技術應用於載子擴散注入多重量子井結構之氮化鎵系列發光二極體," 2014.
[9] 劉子源, "選擇性離子佈植技術應用於輔助擴散發光二極體," 成功大學光電科學與工程學系學位論文, pp. 1-110, 2015.
[10] 李晨暉, "不同載子注入方式的氮化鋁鎵發光二極體之相關特性研究," 2016.
[11] M.-L. Lee, Y.-H. Yeh, Z.-Y. Liu, K.-J. Chiang, and J.-K. Sheu, "Planar GaN-based blue light-emitting diodes with surface pn junction formed by selective-area Si–ion implantation," IEEE Transactions on Electron Devices, vol. 64, no. 10, pp. 4156-4160, 2017.
[12] 鄭新諺, "離子佈植技術應用於氮化鎵系列光電元件," 碩士, 光電科學與工程學系, 國立成功大學, 台南市, 2017.
[13] 施敏 and 伍國, 半導體元件物理與製作技術. 2013.
[14] F. Olivier, S. Tirano, L. Dupré, B. Aventurier, C. Largeron, and F. Templier, "Influence of size-reduction on the performances of GaN-based micro-LEDs for display application," Journal of Luminescence, vol. 191, pp. 112-116, 2017.
[15] M. S. Wong et al., "High efficiency of III-nitride micro-light-emitting diodes by sidewall passivation using atomic layer deposition," Optics express, vol. 26, no. 16, pp. 21324-21331, 2018.
[16] J. Kou et al., "Impact of the surface recombination on InGaN/GaN-based blue micro-light emitting diodes," Optics express, vol. 27, no. 12, pp. A643-A653, 2019.
[17] Z. Gong et al., "Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes," Journal of Applied Physics, vol. 107, no. 1, p. 013103, 2010.
[18] D. Hwang, A. Mughal, C. D. Pynn, S. Nakamura, and S. P. DenBaars, "Sustained high external quantum efficiency in ultrasmall blue III–nitride micro-LEDs," Applied Physics Express, vol. 10, no. 3, p. 032101, 2017.
[19] H. P. T. Nguyen, M. Djavid, K. Cui, and Z. Mi, "Temperature-dependent nonradiative recombination processes in GaN-based nanowire white-light-emitting diodes on silicon," Nanotechnology, vol. 23, no. 19, p. 194012, 2012.
[20] S. H. Lee, S. H. Kim, Y. H. Song, S.-R. Jeon, and J. S. Yu, "Thermal and optical properties of InGaN/GaN green vertical light-emitting diodes on molybdenum substrate for different submounts," Japanese Journal of Applied Physics, vol. 52, no. 10R, p. 102102, 2013.
[21] N. A. Pfaff, K. M. Kelchner, D. F. Feezell, S. Nakamura, S. P. DenBaars, and J. S. Speck, "Thermal Performance of Violet and Blue Single-Quantum-Well Nonpolar m-Plane InGaN Light-Emitting Diodes," Applied Physics Express, vol. 6, no. 9, p. 092104, 2013.
[22] J.-I. Shim, H. Kim, D.-P. Han, D.-S. Shin, and K. S. Kim, "Low temperature studies of the efficiency droop in InGaN-based light-emitting diodes," in Gallium Nitride Materials and Devices IX, 2014, vol. 8986: International Society for Optics and Photonics, p. 89861S.
[23] I. Prudaev, O. Tolbanov, and S. Khludkov, "Low‐temperature transport of charge carriers in InGaN/GaN multiple quantum well light‐emitting diodes," physica status solidi (a), vol. 212, no. 5, pp. 930-934, 2015.
[24] J. H. Park et al., "Variation of the external quantum efficiency with temperature and current density in red, blue, and deep ultraviolet light-emitting diodes," Journal of Applied Physics, vol. 119, no. 2, p. 023101, 2016.
[25] A. David, N. G. Young, C. Lund, and M. D. Craven, "Thermal droop in high-quality InGaN LEDs," Applied Physics Letters, vol. 115, no. 22, p. 223502, 2019.
[26] A. Rashidi, M. Monavarian, A. Aragon, and D. Feezell, "Thermal and efficiency droop in InGaN/GaN light-emitting diodes: decoupling multiphysics effects using temperature-dependent RF measurements," Scientific reports, vol. 9, no. 1, pp. 1-10, 2019.