| 研究生: |
陳佳儀 Chen, Chia-Yi |
|---|---|
| 論文名稱: |
二氧化錳及鈀修飾之泡沫鎳複合式陰極應用於電催化苯酚降解 Manganese dioxide and palladium modified foam-nickel composite cathode for electrocatalytic degradation of phenol |
| 指導教授: |
黃守仁
Whang, Thou-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 二氧化錳 、鈀 、泡沫鎳 、電催化 、高級氧化技術 、苯酚 |
| 外文關鍵詞: | manganese dioxide, palladium, foam nickel, electrocatalysis, advanced oxidation processes, phenol |
| 相關次數: | 點閱:111 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用循環伏安法在具有高孔隙率及表面積特性的三維交聯網格結構泡沫鎳陰極(foam-Ni)上,電沉積製備二氧化錳修飾層的泡沫鎳陰極 (foam-Ni/MnO2) 後,再利用定電流方法電沉積鈀金屬於此電極上,製作同時具有二氧化錳和鈀金屬修飾的泡沫鎳電極 (foam-Ni/MnO2/Pd),並且將其應用於電催化降解苯酚廢水。
透過循環伏安法、SEM以及EDS mapping對foam-Ni/MnO2/Pd電極進行電極製備之實驗參數最佳化、形貌和元素分析。透過循環伏安法分析和SEM,觀察到掃描速率為0.025 Vs-1 ~ 0.05 Vs-1時二氧化錳的形貌為不規則相連奈米片狀結構,並且可最佳化掃描圈數,得到最大之氧化峰電流,其中0.04 Vs-1及0.05 Vs-1 在最佳化掃描圈數 (分別為11、10圈) 後有相近的Ip值;在掃描速率大於0.075 Vs-1時結構會有明顯的空洞,不利於後續鈀沉積,結果顯示氧化峰電流與奈米片狀結構完整性有正相關。鈀金屬修飾的形貌分析觀察到,在泡沫鎳骨架的平面區為小型的鈀顆粒沉積,而在曲面區則是形成大小約228 nm的球型鈀團簇或是聚集型的鈀生成,且鈀容易在二氧化錳不規則相連奈米片狀結構的裂縫中生長成球型的鈀團簇,大小約為160 nm。在催化降解苯酚方面,使用foam-Ni/MnO2/Pd陰極降解苯酚,當電流密度為2 mA/cm2時,可在2小時內達到91.6%的苯酚降解率;與僅修飾二氧化錳或鈀的泡沫鎳陰極比較,顯示其擁有更高的催化苯酚降解能力。透過二氧化錳薄層將foam-Ni/MnO2/Pd陰極上之鈀金屬進行固定,製成foam-Ni/MnO2/Pd/MnO2,能減少鈀金屬於清洗過程中的流失,提高陰極重複使用的能力,同時也能保有與foam-Ni/MnO2/Pd陰極相近的催化苯酚降解效能。
Foam nickel electrode (foam-Ni) modified with manganese dioxide and palladium metal (foam-Ni/MnO2/Pd) was made by two electrodeposition steps. First, electrodeposition of manganese dioxide on a three-dimensional cross-linked foam nickel electrode with high porosity and surface area by cyclic voltammetry (CV), then use constant current method to electrodeposit palladium metal on the electrode.
Foam-Ni/MnO2/Pd electrodes have been characterized by using CV, SEM and EDS mapping to optimize the experiment parameters. Foam-Ni/MnO2/Pd cathode catalyzes the degradation of phenol. Apply a current with current density 2 mA/cm2 for 2 hours on phenol wastewater, the degradation rate of phenol reached 91.6%, compared with the foam-Ni modified only with manganese dioxide or palladium, the results show it has a higher ability to catalyze the degradation of phenol. The palladium on the foam-Ni/MnO2/Pd cathode is immobilized through a thin layer of manganese dioxide (foam-Ni/MnO2/Pd/ MnO2), which can reduce the loss of palladium in the cleaning process to improve the electrode reusability, while maintaining similar phenol degradation efficiency to foam-Ni/MnO2/Pd cathode.
參考文獻
1. Boonrattanakij, N.; Joysampao, A.; Pobsuktanasub, T.; Anotai, J.; Ruangchainikom, C., Treatability of phenol-production wastewater: Rate constant and pathway of dimethyl phenyl carbinol oxidation by hydroxyl radicals. Journal of Environmental Management 2017, 204, 613-621.
2. Senthilvelan, T.; Kanagaraj, J.; Panda, R. C.; Mandal, A. B., Biodegradation of phenol by mixed microbial culture: an eco-friendly approach for the pollution reduction. Clean Technologies and Environmental Policy 2014, 16 (1), 113-126.
3. MA Barron, L. H., A Maier, J Zhao, M Dourson, Toxicological Review of Phenol. DC EPA 2002, 635/R-02/006.
4. Godjevargova, T.; Ivanova, D.; Alexieva, Z.; Dimova, N., Biodegradation of toxic organic components from industrial phenol production waste waters by free and immobilized Trichosporon cutaneum R57. Process Biochemistry 2003, 38 (6), 915-920.
5. González, G.; Herrera, G.; Garcı; x; a, M. T.; Peña, M., Biodegradation of phenolic industrial wastewater in a fluidized bed bioreactor with immobilized cells of Pseudomonas putida. Bioresource Technology 2001, 80 (2), 137-142.
6. Hirata, A.; Noguchi, M.; Takeuchi, N.; Tsuneda, S., Kinetics of biological treatment of phenolic wastewater in three-phase fluidized bed containing biofilm and suspended sludge. Water Science and Technology 1998, 38 (8), 205-212.
7. Okolo, B.; Park, C.; Keane, M. A., Interaction of Phenol and Chlorophenols with Activated Carbon and Synthetic Zeolites in Aqueous Media. Journal of Colloid and Interface Science 2000, 226 (2), 308-317.
8. Esplugas, S.; Giménez, J.; Contreras, S.; Pascual, E.; Rodrı́guez, M., Comparison of different advanced oxidation processes for phenol degradation. Water Research 2002, 36 (4), 1034-1042.
9. Yu, J.; Savage, P. E., Catalyst activity, stability, and transformations during oxidation in supercritical water. Applied Catalysis B: Environmental 2001, 31 (2), 123-132.
10. Cains, P. W.; McCausland, L. J.; Fernandes, A. R.; Dyke, P., Polychlorinated dibenzo-p-dioxins and dibenzofurans formation in incineration: Effects of fly ash and carbon source. Environmental Science and Technology 1997, 31 (3), 776-785.
11. Feng, Y. J.; Li, X. Y., Electro-catalytic oxidation of phenol on several metal-oxide electrodes in aqueous solution. Water Research 2003, 37 (10), 2399-2407.
12. Wang, Y.-q.; Gu, B.; Xu, W.-l., Electro-catalytic degradation of phenol on several metal-oxide anodes. Journal of Hazardous Materials 2009, 162 (2), 1159-1164.
13. Moreira, F. C.; Boaventura, R. A. R.; Brillas, E.; Vilar, V. J. P., Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters. Applied Catalysis B: Environmental 2017, 202, 217-261.
14. Martínez-Huitle, C. A.; Brillas, E., Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: A general review. Applied Catalysis B: Environmental 2009, 87 (3), 105-145.
15. Li, D.; Sun, T.; Wang, L.; Wang, N., Enhanced electro-catalytic generation of hydrogen peroxide and hydroxyl radical for degradation of phenol wastewater using MnO2/Nano-G|Foam-Ni/Pd composite cathode. Electrochimica Acta 2018, 282, 416-426.
16. Hsu, Y. K.; Chen, Y. C.; Lin, Y. G.; Chen, L. C.; Chen, K. H., Reversible phase transformation of MnO2 nanosheets in an electrochemical capacitor investigated by in situ Raman spectroscopy. Chemical Communications 2011, 47 (4), 1252-1254.
17. Berenguer, R.; Sieben, J. M.; Quijada, C.; Morallón, E., Electrocatalytic degradation of phenol on Pt- and Ru-doped Ti/SnO2-Sb anodes in an alkaline medium. Applied Catalysis B: Environmental 2016, 199, 394-404.
18. Ren, L.-F.; Chen, R.; Zhang, X.; Shao, J.; He, Y., Phenol biodegradation and microbial community dynamics in extractive membrane bioreactor (EMBR) for phenol-laden saline wastewater. Bioresource Technology 2017, 244, 1121-1128.
19. Oliveira, H. G.; Nery, D. C.; Longo, C., Effect of applied potential on photocatalytic phenol degradation using nanocrystalline TiO2 electrodes. Applied Catalysis B: Environmental 2010, 93 (3), 205-211.
20. Li, X.-y.; Cui, Y.-h.; Feng, Y.-j.; Xie, Z.-m.; Gu, J.-D., Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes. Water Research 2005, 39 (10), 1972-1981.
21. Rodgers, J. D.; Jedral, W.; Bunce, N. J., Electrochemical oxidation of chlorinated phenols. Environmental Science and Technology 1999, 33 (9), 1453-1457.
22. Cañizares, P.; Lobato, J.; Paz, R.; Rodrigo, M. A.; Sáez, C., Electrochemical oxidation of phenolic wastes with boron-doped diamond anodes. Water Research 2005, 39 (12), 2687-2703.
23. Panizza, M.; Michaud, P. A.; Cerisola, G.; Comninellis, C., Anodic oxidation of 2-naphthol at boron-doped diamond electrodes. Journal of Electroanalytical Chemistry 2001, 507 (1), 206-214.
24. Iniesta, J.; Michaud, P. A.; Panizza, M.; Cerisola, G.; Aldaz, A.; Comninellis, C., Electrochemical oxidation of phenol at boron-doped diamond electrode. Electrochimica Acta 2001, 46 (23), 3573-3578.
25. Adams, B.; Tian, M.; Chen, A., Design and electrochemical study of SnO2-based mixed oxide electrodes. Electrochimica Acta 2009, 54 (5), 1491-1498.
26. Makgae, M. E.; Theron, C. C.; Przybylowicz, W. J.; Crouch, A. M., Preparation and surface characterization of Ti/SnO2–RuO2–IrO2 thin films as electrode material for the oxidation of phenol. Materials Chemistry and Physics 2005, 92 (2), 559-564.
27. Makgae, M. E.; Klink, M. J.; Crouch, A. M., Performance of sol–gel Titanium Mixed Metal Oxide electrodes for electro-catalytic oxidation of phenol. Applied Catalysis B: Environmental 2008, 84 (3), 659-666.
28. Cartaxo, M. A. M.; Ablad, K.; Douch, J.; Berghoute, Y.; Hamdani, M.; Mendonça, M. H.; Nogueira, J. M. F.; Pereira, M. I. S., Phenol electrooxidation on Fe–Co3O4 thin film electrodes in alkaline medium. Chemosphere 2012, 86 (4), 341-347.
29. Sripriya, R.; Chandrasekaran, M.; Subramanian, K.; Asokan, K.; Noel, M., Electrochemical destruction of p-chlorophenol and p-nitrophenol – Influence of surfactants and anode materials. Chemosphere 2007, 69 (2), 254-261.
30. Fernandes, A.; Pacheco, M. J.; Ciríaco, L.; Lopes, A., Review on the electrochemical processes for the treatment of sanitary landfill leachates: Present and future. Applied Catalysis B: Environmental 2015, 176-177, 183-200.
31. Comninellis, C., Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment. Electrochimica Acta 1994, 39 (11), 1857-1862.
32. Guo, X.; Wan, J.; Yu, X.; Lin, Y., Study on preparation of SnO2-TiO2/Nano-graphite composite anode and electro-catalytic degradation of ceftriaxone sodium. Chemosphere 2016, 164, 421-429.
33. Oturan, N.; van Hullebusch, E. D.; Zhang, H.; Mazeas, L.; Budzinski, H.; Le Menach, K.; Oturan, M. A., Occurrence and Removal of Organic Micropollutants in Landfill Leachates Treated by Electrochemical Advanced Oxidation Processes. Environmental Science & Technology 2015, 49 (20), 12187-12196.
34. Moreira, F. C.; Boaventura, R. A. R.; Brillas, E.; Vilar, V. J. P., Remediation of a winery wastewater combining aerobic biological oxidation and electrochemical advanced oxidation processes. Water Research 2015, 75, 95-108.
35. Luo, H.; Li, C.; Wu, C.; Zheng, W.; Dong, X., Electrochemical degradation of phenol by in situ electro-generated and electro-activated hydrogen peroxide using an improved gas diffusion cathode. Electrochimica Acta 2015, 186, 486-493.
36. Wang, H.; Sun, D.-Z.; Bian, Z.-Y., Degradation mechanism of diethyl phthalate with electrogenerated hydroxyl radical on a Pd/C gas-diffusion electrode. Journal of Hazardous Materials 2010, 180 (1), 710-715.
37. Liu, Y.; Chen, S.; Quan, X.; Yu, H.; Zhao, H.; Zhang, Y., Efficient Mineralization of Perfluorooctanoate by Electro-Fenton with H2O2 Electro-generated on Hierarchically Porous Carbon. Environmental Science & Technology 2015, 49 (22), 13528-13533.
38. Zhou, M.; Liu, L.; Jiao, Y.; Wang, Q.; Tan, Q., Treatment of high-salinity reverse osmosis concentrate by electrochemical oxidation on BDD and DSA electrodes. Desalination 2011, 277 (1), 201-206.
39. Belkacem, S.; Bouafia, S.; Chabani, M., Study of oxytetracycline degradation by means of anodic oxidation process using platinized titanium (Ti/Pt) anode and modeling by artificial neural networks. Process Safety and Environmental Protection 2017, 111, 170-179.
40. Guo, X.; Li, D.; Wan, J.; Yu, X., Preparation and electrochemical property of TiO2/Nano-graphite composite anode for electro-catalytic degradation of ceftriaxone sodium. Electrochimica Acta 2015, 180, 957-964.
41. Vlyssides, A.; Barampouti, E. M.; Mai, S.; Arapoglou, D.; Kotronarou, A., Degradation of Methylparathion in Aqueous Solution by Electrochemical Oxidation. Environmental Science & Technology 2004, 38 (22), 6125-6131.
42. Jager, D.; Kupka, D.; Vaclavikova, M.; Ivanicova, L.; Gallios, G., Degradation of Reactive Black 5 by electrochemical oxidation. Chemosphere 2018, 190, 405-416.
43. Peng, Z.; Yu, Z.; Wang, L.; Hou, Y.; Shi, Y.; Wu, L.; Li, Z., Facile synthesis of Pd–Fe nanoparticles modified Ni foam electrode and its behaviors in electrochemical reduction of tetrabromobisphenol A. Materials Letters 2016, 166, 300-303.
44. Gong, Y.; Li, J.; Zhang, Y.; Zhang, M.; Tian, X.; Wang, A., Partial degradation of levofloxacin for biodegradability improvement by electro-Fenton process using an activated carbon fiber felt cathode. Journal of Hazardous Materials 2016, 304, 320-328.
45. Cotillas, S.; Llanos, J.; Rodrigo, M. A.; Cañizares, P., Use of carbon felt cathodes for the electrochemical reclamation of urban treated wastewaters. Applied Catalysis B: Environmental 2015, 162, 252-259.
46. Babaei-Sati, R.; Basiri Parsa, J., Electrogeneration of H2O2 using graphite cathode modified with electrochemically synthesized polypyrrole/MWCNT nanocomposite for electro-Fenton process. Journal of Industrial and Engineering Chemistry 2017, 52, 270-276.
47. Wang, Y.; Liu, Y.; Wang, K.; Song, S.; Tsiakaras, P.; Liu, H., Preparation and characterization of a novel KOH activated graphite felt cathode for the electro-Fenton process. Applied Catalysis B: Environmental 2015, 165, 360-368.
48. Wang, C.-T.; Hu, J.-L.; Chou, W.-L.; Kuo, Y.-M., Removal of color from real dyeing wastewater by Electro-Fenton technology using a three-dimensional graphite cathode. Journal of Hazardous Materials 2008, 152 (2), 601-606.
49. Lado, J. L.; Wang, X.; Paz, E.; Carbó-Argibay, E.; Guldris, N.; Rodríguez-Abreu, C.; Liu, L.; Kovnir, K.; Kolen’ko, Y. V., Design and Synthesis of Highly Active Al–Ni–P Foam Electrode for Hydrogen Evolution Reaction. ACS Catalysis 2015, 5 (11), 6503-6508.
50. Yu, L.; Zhang, G.; Yuan, C.; Lou, X. W., Hierarchical NiCo2O4@MnO2 core-shell heterostructured nanowire arrays on Ni foam as high-performance supercapacitor electrodes. Chemical Communications 2013, 49 (2), 137-139.
51. Yuan, C.; Yang, L.; Hou, L.; Shen, L.; Zhang, X.; Lou, X. W., Growth of ultrathin mesoporous Co3O4 nanosheet arrays on Ni foam for high-performance electrochemical capacitors. Energy & Environmental Science 2012, 5 (7), 7883-7887.
52. Lee, S. W.; Kim, J.; Chen, S.; Hammond, P. T.; Shao-Horn, Y., Carbon nanotube/manganese oxide ultrathin film electrodes for electrochemical capacitors. ACS Nano 2010, 4 (7), 3889-3896.
53. Wang, H.; Wang, J., Comparative study on electrochemical degradation of 2,4-dichlorophenol by different Pd/C gas-diffusion cathodes. Applied Catalysis B: Environmental 2009, 89 (1), 111-117.
54. Wang, H.; Bian, Z.; Lu, G.; Pang, L.; Zeng, Z.; Sun, D., Preparation of multifunctional gas-diffusion electrode and its application to the degrading of chlorinated phenols by electrochemical reducing and oxidizing processes. Applied Catalysis B: Environmental 2012, 125, 449-456.
55. Fathy, N. A.; El-Shafey, S. E.; El-Shafey, O. I.; Mohamed, W. S., Oxidative degradation of RB19 dye by a novel γ-MnO2/MWCNT nanocomposite catalyst with H2O2. Journal of Environmental Chemical Engineering 2013, 1 (4), 858-864.
56. Roy, C. B., Catalytic decomposition of hydrogen peroxide on some oxide catalysts. Journal of Catalysis 1968, 12 (2), 129-133.
57. Goldstein, J. R.; Tseung, A. C. C., The kinetics of hydrogen peroxide decomposition catalyzed by cobalt-iron oxides. Journal of Catalysis 1974, 32 (3), 452-465.
58. Erb, U.; Palumbo, G.; McCrea, J. L., 5 - The processing of bulk nanocrystalline metals and alloys by electrodeposition. In Nanostructured Metals and Alloys, Whang, S. H., Ed. Woodhead Publishing: 2011, 118-151.
59. Choo, R. T. C.; Toguri, J. M.; El-Sherik, A. M.; Erb, U., Mass transfer and electrocrystallization analyses of nanocrystalline nickel production by pulse plating. Journal of Applied Electrochemistry 1995, 25 (4), 384-403.
60. Gunawardena, G.; Hills, G.; Montenegro, I.; Scharifker, B., Electrochemical nucleation: Part III. The electrodeposition of mercury on vitreous carbon. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1982, 138 (2), 255-271.
61. Bard, A. J., & Faulkner, L. R., Electrochemical methods: Fundamentals and applications. 2001.
62. 吳永富, 電化學工程應用. 五南圖書出版股份有限公司: 2019, 198-200.
63. Mabbott, G. A., An introduction to cyclic voltammetry. Journal of Chemical Education 1983, 60 (9), 697.
64. Kissinger, P. T.; Heineman, W. R., Cyclic voltammetry. Journal of Chemical Education 1983, 60 (9), 702.
65. Pease, R. F. W., Significant Advances in Scanning Electron Microscopes (1965–2007). In Advances in Imaging and Electron Physics, Hawkes, Ed. Elsevier: 2008; Vol. 150, 53-86.
66. Reimer, L., Electron Optics of a Scanning Electron Microscope. In Scanning Electron Microscopy: Physics of Image Formation and Microanalysis, Reimer, L., Ed. Springer Berlin Heidelberg: Berlin, Heidelberg, 1985, 13-56.
67. Abd Mutalib, M.; Rahman, M. A.; Othman, M. H. D.; Ismail, A. F.; Jaafar, J., Chapter 9 - Scanning Electron Microscopy (SEM) and Energy-Dispersive X-Ray (EDX) Spectroscopy. In Membrane Characterization, Hilal, N.; Ismail, A. F.; Matsuura, T.; Oatley-Radcliffe, D., Eds. Elsevier: 2017, 161-179.
68. Carlton, R. A., Scanning Electron Microscopy and Energy-Dispersive X-Ray Spectrometry. In Pharmaceutical Microscopy, Carlton, R. A., Ed. Springer New York: New York, NY, 2011, 85-130.
69. Zhou, W.; Apkarian, R.; Wang, Z. L.; Joy, D., Fundamentals of Scanning Electron Microscopy (SEM). In Scanning Microscopy for Nanotechnology: Techniques and Applications, Zhou, W.; Wang, Z. L., Eds. Springer New York: New York, NY, 2007, 1-40.
70. Reichelt, R., Scanning Electron Microscopy. In Science of Microscopy, Hawkes, P. W.; Spence, J. C. H., Eds. Springer New York: New York, NY, 2007, 133-272.
71. Yu, X.; Sun, T.; Wan, J., Preparation for Mn/nanographite materials and study on electrochemical degradation of phenol by Mn/nanographite cathodes. Journal of Nanoscience and Nanotechnology 2014, 14 (9), 6835-6840.
72. Fang, J. M.; Sun, R. C.; Salisbury, D.; Fowler, P.; Tomkinson, J., Comparative study of hemicelluloses from wheat straw by alkali and hydrogen peroxide extractions. Polymer Degradation and Stability 1999, 66 (3), 423-432.
73. Mailloux, R. J., Teaching the fundamentals of electron transfer reactions in mitochondria and the production and detection of reactive oxygen species. Redox Biology 2015, 4, 381-398.
74. Wang, W. T.; Guo, J.; Fang, C.; Jiang, Z. H.; Wang, T. F., An improved Prandtl-Ishlinskii model for compensating rate-dependent hysteresis in fast steering mirror system. Optoelectronics Letters 2016, 12 (6), 426-429.
75. Griffith, W. P.; Robinson, S. D.; Swars, K., Palladium and Antimony. In Pd Palladium: Palladium Compounds, Griffith, W. P.; Robinson, S. D.; Swars, K.; Griffith, W. P.; Swars, K., Eds. Springer Berlin Heidelberg: Berlin, Heidelberg, 1989, 352-352.
76. National Center for Biotechnology Information. PubChem Database. CID=11000870
https://pubchem.ncbi.nlm.nih.gov/compound/Sodium-tetrachloropalladate_II (accessed on May 2, 2020).
77. Lou, Z.; Zhou, J.; Sun, M.; Xu, J.; Yang, K.; Lv, D.; Zhao, Y.; Xu, X., MnO2 enhances electrocatalytic hydrodechlorination by Pd/Ni foam electrodes and reduces Pd needs. Chemical Engineering Journal 2018, 352, 549-557.
78. Li, Y.; Cai, X.; Shen, W., Preparation and performance comparison of supercapacitors based on nanocomposites of MnO2 with cationic surfactant of CTAC or CTAB by direct electrodeposition. Electrochimica Acta 2014, 149, 306-315.
校內:2025-07-15公開