| 研究生: |
吳俊儒 Wu, Chun-Ju |
|---|---|
| 論文名稱: |
抑制永磁同步馬達頓轉扭矩之位置依據型重複扭矩觀測器設計 Position-Based Repetitive Learning Torque Observer Design for PMSM Cogging Torque Reduction |
| 指導教授: |
蔡明祺
Tsai, Mi-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 無刷永磁同步馬達 、頓轉扭矩 、重複控制 、模型依據觀測器 |
| 外文關鍵詞: | PMSM, Cogging Torque, Position-Based Repetitive Control, Model-Based Disturbance Observer |
| 相關次數: | 點閱:90 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
當無刷永磁同步馬達轉子對正定子齒部與槽部時,氣隙磁阻會有不同的變化,使得馬達轉動時產生磁阻力的擾動,稱為頓轉扭矩。頓轉扭矩為馬達本身內部所具有的扭矩外擾,使得馬達在低轉速時,會造成轉速與轉矩控制上困難,因而限制了馬達操作範圍。本研究於磁場導向(FOC)速度控制架構上,建立模型依據之扭矩外擾觀測器,並引入了位置依據的重複學習控制,使具備依馬達位置為基準的頓轉扭矩學習功能,即時估測馬達頓轉扭矩,以降低扭矩觀測器之估測誤差。為了抵銷降低頓轉扭矩對速度控制迴路的影響,本研究亦提出在線扭矩補償與離線扭矩補償兩個架構,將觀測器所學習到的過去各位置上的記憶資料,分別經過遺忘因子和平均處理作補償,利用位置查表方式,直接補償電流於電流迴路中。本研究採用硬體在線迴路先驗證所提的觀測器性能,以及補償架構的可行性,最後以實務系統的實驗結果,驗證頓轉扭矩估測器的精準性,及能有效改善低轉速時的轉速漣波現象。
In a PM machine, the cogging torque is caused by reluctance variations in the air gap, which may degrade the speed and torque control performance in lower speed operation and undoubtedly limit the operational range of a PM machine. In order to reduce the cogging torque effect, this paper proposes a new observer structure aiming at cogging torque estimation and rejection. This new observer structure possesses the capability of repeatedly learning the observed torque using the rotor position to achieve higher estimation accuracy. This paper further proposes an online/offline torque compensation strategy for the cogging torque rejection, which utilizes the memory learned from the observer in each rotation, combined with the concept of forgetting factor and position-based average, to generate the torque compensation lookup table for rotor positions. An experimental platform consisted of a real motor driver and PM motor was established to verify the proposed observer and compensate strategy.
[1] C. Studer, A. Keyhani, T. Sebastian, and S. K. Murthy, "Study of cogging torque in permanent magnet machines," vol. 1, pp. 42-49, 1997.
[2] R. Setiabudy, Herlina, and Y. S. Putra, "Reduction of cogging torque on brushless direct current motor with segmentation of magnet permanent," Proc. of 2017 4th Int. Conf. on Information Tech., Computer, and Electrical Engineering (ICITACEE), pp. 81-86, 2017.
[3] Herlina, R. Setiabudy, and A. Rahardjo, "Cogging torque reduction by modifying stator teeth and permanent magnet shape on a surface mounted PMSG," pp. 227-232, 2017.
[4] Y. Ueda, H. Takahashi, A. Ogawa, T. Akiba, and M. Yoshida, "Cogging-Torque Reduction of Transverse-Flux Motor by Skewing Stator Poles," (in English), Ieee Transactions on Magnetics, vol. 52, no. 7, pp. 1-4, Jul 2016.
[5] X. Ge, Z. Q. Zhu, G. Kemp, D. Moule, and C. Williams, "Optimal Step-Skew Methods for Cogging Torque Reduction Accounting for Three-Dimensional Effect of Interior Permanent Magnet Machines," (in English), Ieee Transactions on Energy Conversion, vol. 32, no. 1, pp. 222-232, Mar 2017.
[6] M. Piccoli and M. Yim, "Cogging Torque Ripple Minimization via Position Based Characterization," 2014.
[7] G. Ellis, "Observers in Control Systems: A Practical Guide," 2002. Academic Press
[8] S. Katsura, K. Irie, and K. Ohishi, "Wideband force control by position-acceleration integrated disturbance observer," (in English), Ieee Transactions on Industrial Electronics, vol. 55, no. 4, pp. 1699-1706, Apr 2008.
[9] C.-L. Chen and M.-C. Tsai, "Position-Dependent Repetitive Control for Speed Ripple Reduction of Ultrasonic Motor," IFAC Proceedings Volumes, vol. 47, no. 3, pp. 1754-1759, 2014.
[10] P. Y. Li, "Internal Model Principle, Lecture of Advanced Control System Design, "http://www.me.umn.edu/courses/me8281/Old/IMP-repetitive.pdf"," 2016 Spring.
[11] Y. Yuan, F. Auger, L. Loron, S. Moisy, and M. Hubert, "Torque ripple reduction in Permanent Magnet Synchronous Machines using angle-based iterative learning control," pp. 2518-2523, 2012.
[12] 曹峻嘉, "運用疊代學習控制器於永磁同步馬達轉矩漣波抑制之實作," 2013.
[13] 陳俊霖、蔡明祺, "應用重複控制器於超因波馬達速度之漣波抑制 " 2011.
[14] 李錦英、付承毓、陳興龍、田竟、于偉, "永磁同步電機中齒槽力矩的量測以及抑制系統與實現方法," 中華人民共和國國家知識產權局 發明專利申請號201110369226.5, 11/20 2011.
[15] 佳準科技股份有限公司, "ATM/ATV 頓轉扭矩和轉矩漣波測試系統 / 日本 菅原研究所," http://www.propii.com.tw/upload/product/101/0de697842e75751c40fe31de0b37e7e3.pdf.
[16] D. D. Hanselman, "Brushless Permanent Magnet Motor Design," 1994.
[17] 吳昇澤、蔡明祺, "永磁同步馬達d-q軸電感量測原理推導與實測," 馬達電子報 第781期, 2018.
[18] 劉昌煥, "交流電機控制-向量控制與直接轉矩控制原理."
[19] 劉子瑜、鄭銘揚, "基於弦波電流驅動於永磁同步馬達電流迴路控制之研究," 2009.
[20] Z. Q. Zhu and D. Howe, "Analytical Prediction of the Cogging Torque in Radial-Field Permanent-Magnet Brushless Motors," (in English), Ieee Transactions on Magnetics, vol. 28, no. 2, pp. 1371-1374, Mar 1992.
[21] Z. Li, S. Z. Jiang, Z. Q. Zhu, and C. C. Chan, "Analytical Methods for Minimizing Cogging Torque in Permanent-Magnet Machines," IEEE Transactions on Magnetics, vol. 45, no. 4, pp. 2023-2031, 2009.
[22] S. H. Żak, "The Internal Model Principle, Lecture of Feedback System Analysis and Design, "https://engineering.purdue.edu/~zak/ECE_382-2014/hand_3.pdf "," 2016 Fall.
[23] T. Mi-Ching and Y. Wu-Sung, "Design of a plug-in type repetitive controller for periodic inputs," IEEE Transactions on Control Systems Technology, vol. 10, no. 4, pp. 547-555, 2002.
[24] S. Hara, Y. Yamamoto, T. Omata, and M. Nakano, "Repetitive Control-System - a New Type Servo System for Periodic Exogenous Signals," (in English), Ieee Transactions on Automatic Control, vol. 33, no. 7, pp. 659-668, Jul 1988.
[25] 凱登智動科技, "MR series說明書," https://www.gathertech.net/, 2018.
校內:2023-09-01公開