簡易檢索 / 詳目顯示

研究生: 劉俊賢
Liou, Jyun-Sian
論文名稱: 二氧化碳稀釋富氧甲烷擴散火焰之數值研究
A Numerical Study of Effects of Carbon-Dioxide Dilution on the Oxy-Fuel Methane Diffusion Flames
指導教授: 趙怡欽
Chao, Yei-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 76
中文關鍵詞: 富氧燃燒二氧化碳稀釋擴散火焰數值模擬甲烷二氧化碳
外文關鍵詞: Oxy-fuel, Carbon-Dioxide Dilution, Diffusion Flames, Numerical, Numerical Simulation, Carbon-Dioxide
相關次數: 點閱:118下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以實驗搭配數值模擬研究二氧化碳或氮氣稀釋氧氣為併流(co-flow)之富氧甲烷擴散火焰之燃燒特性。由於二氧化碳稀釋富氧甲烷燃燒系統可達到無氮燃燒,且可回收高濃度之二氧化碳做後續二氧化碳之高效率捕抓(capture)與有效封存(sequestration),此燃燒系統所有燃燒後的氣體幾乎都可被回收,對於降低環境汙染與降低溫室效應有相當大的幫助。以純氧燃燒將造成相當高溫的火焰,所以實務尚需要回流部分含二氧化碳的煙道氣(flue gas)作為火焰降溫稀釋之用,但由於回流稀釋量太多會造成火燄不穩定,稀釋量太低氧氣濃度高卻容易造成局部高溫,對燃燒室設計相當不利,且高溫對於燃燒室材料選用會變得極為困難,成本也隨之提高。
    由模擬結果得知,當甲烷擴散燃燒時,周圍的併流場會捲入燃料底部,造成部分預混的效果,使得火焰提早獲得氧氣而提前反應,火焰長度進而變短,當氧氣濃度提高時,燃燒速度變快,火焰變得更為短小,溫度也跟著提升,高溫時的二氧化碳Cp值為氮氣的1.67倍,高吸熱效果會使整體火焰溫度降低、火焰速度降低,反應變得比氮氣時更加延緩,OH量減少且有延後的情況發生,不完全的燃燒使得CO量變多。

    In this paper, experiments with a numerical simulation of oxygen to carbon dioxide or nitrogen dilution and flow (co-flow) of the oxygen-enriched combustion characteristics of methane diffusion flame. Dilution of oxygen-enriched combustion of methane as carbon dioxide to nitrogen-free combustion system, and the high concentration of carbon dioxide recycled to do the follow-up of carbon dioxide efficient catch them (capture) and the effective storage (sequestration), the combustion system almost all the combustion gases can be be recycled, for reducing environmental pollution and reduce greenhouse there is a big help. To pure oxygen combustion will result in considerable heat in the flame, so still need to return part of the practice of carbon dioxide containing flue gas (flue gas) used as flame cooling diluted, but dilution of the amount returned will cause too much instability in the flame, the amount is too dilute Low oxygen concentrations are likely to cause high local temperature on the combustion chamber design of considerable disadvantage, and high-temperature materials used for the combustion chamber will become extremely difficult, cost will increase.
    From the simulation results, when the diffusion combustion of methane, and the flow field around the bottom will get involved in the fuel, resulting in some of the effects of premixed, the flame of oxygen and the early response of early, flame length and then shortened, when the oxygen concentration increases, combustion speed becomes faster, the flame becomes more short, temperature increase with high temperature when the nitrogen dioxide Cp value of 1.67 times, the high endothermic effect will reduce overall flame temperature, flame speed reduces the reaction time becomes more than the nitrogen delay, OH reduced to happen and there is delayed, incomplete combustion of CO made more quantitative.

    摘要 I Abstract III 致謝 V 表目錄 VIII 圖目錄 IX 符號表 XII 第一章 緒論 1 第二章 文獻回顧與動機目的 4 2-1 富氧燃燒 4 2-2 文獻回顧 5 2-3 研究動機與目的 6 第三章 實驗方法 7 3-1 實驗設備 7 3-2 燃料與空氣供應設備 8 3-3 操作方法 8 第四章 數值方法 10 4-1 軟體使用 10 4-2 基本假設 11 4-3 統御方程式 11 4-4 SIMPLEC 13 4-5 有限體積法 17 4-6 格點獨立性測試 19 4-7 邊界條件 20 4-8化學反應 21 第五章 結果與討論 23 5-1 外圍併流氣體對於擴散火焰長度及火焰溫度的影響 23 5-2 氧氣濃度對於火焰長度及火焰溫度的影響 25 5-3 氮氣與二氧化碳對於富氧火焰溫度之影響 26 5-4 氮氣與二氧化碳對於富氧火焰OH之影響 27 5-5 氮氣與二氧化碳對於富氧火焰CO之影響 27 第六章 結論 29 參考文獻 30

    Beltrame, A., Porshnev, P., Merchan-Merchan, W., Saveliev, A., Fridman, A., and Kennedy, L. A., “Soot and NO Formation in Methane-Oxygen Enriched Diffusion Flames”, Combustion and Flame, Vol.124, pp. 295-310, 2001.
    BennettB.A.V.,Mcenally,C.S.,Pfefferle, L.D., Smooke, M.D., “Computational and Experimental Study of Axisymmetric Coflow Partially Premixed Methane-air Flames”, Combustion and Flame, Vol.123, pp. 522-546, 2000.
    Chung, S. H. and Lee, B. J., “On the Characteristics of Laminar Lifted Flame in a Non-premixed Jet” , Combustion and Flame, Vol.86, pp. 62-72, 1991.
    Claramunt K., R. Consul, C.D. Perez-Segarra, A.O., “Multidimensional Mathematical Modeling and Numerical Investigation of Co-flow Partially Premixed Methane-air Laminar Flames”, Combustion and Flame, Vol.137, pp. 444-457, 2004
    Croiset, E., Thambimuthu, K. V., “NOx and SO2 Emissions from O2/CO2 Recycle Coal Combustion”, Fuel, Vol. 80, pp. 2117-2121, 2001
    Hwang, C.-H., Oh, C.B., Lee, C.-E., “Effects of CO2 Dilution on the Interactions of a CH4–Air Nonpremixed Jet Flame with a Single Vortex”, International Journal of Thermal Science, Vol. 48, pp. 1423-1431, 2009
    Hainsworth, D., Pourkashanian, M., Richardson, A.P., Rupp, J.L., Williams, A., “The Influence of Carbon Dioxide on Smoke Formation and Stability in Methane-Oxygen-Carbon Dioxide Flames”, Fuel, Vol. 75, pp. 393-396, 1996
    Jody, B. J., Daniels, E. J., and Wolsky, A. M., “Integrating O2 Production with Power Systems to Capture CO2 ” , Energy Conversion and Management, Vol. 38, pp. S135-S140, 1997
    Katta V.R., Takahashi, F., Linteris, G.T., “Suppression of Cup-Burner Flames Using Carbon Dioxide in Microgravity”, Combustion and Flame, Vol. 137, pp. 506-522, 2004
    Kimura, N., Omata, K., Kiga, T., Takano, S., and Shikisima, S., “The Characteristics of Pulverized Coal Combustion in O2/CO2 Mixtures for CO2 Recovery”, Energy Conversion and Management, Vol. 36, No. 6-9, pp. 805-808, 1995
    Kuo, K.K., Principle of Combustion, John Wiley and Sons, Inc., 1986
    Lee, B. J. and Chung, S. H., “Stabilization of Lifted Tribrachial Flames in a Laminar Non-premixed Jet ” , Combustion and Flame, Vol.109, pp.163-172, 1997
    Lee C.E., C.B. Oh, J.H. Kim.,“Numerical and experimental investigations of the NOx emission characteristics of CH4-air coflow jet flames” , Fuel, Vol. 83, pp. 2323-2334, 2004
    Leung T., I. Wierzba, “The effect of hydrogen addition on biogas non-premixed jet flame stability in a co-flowing air stream”, International Journal of Hydrogen Energy, Vol. 33, pp. 3856-3862, 2008
    Liu, F., Guo, H., Smallwood, G.J.., “ The Chemical Effect of CO2 Replacement of N2 in Air on the Burning Velocity of CH4 and H2 Premixed Flames”, Combustion and Flame, Vol. 133, pp. 498-497, 2003
    Lock Andrew, Alejandro, M. Briones, Suresh K. Aggarwal, Ishwar K. Puri, Uday Hegde, “Liftoff and extinction characteristics of fuel- and air-stream-diluted methane–air flames”, Combustion and Flame, Vol. 149, pp. 340-352, 2007
    Lock Andrew, Sures K. Aggarwal, Ishwar K. Puri, Uday Hegde, “Suppression of fuel and air stream diluted methane–air partially premixed flames in normal and microgravity”, Fire Safety Journal, Vol. 43, pp. 24-35, 2008
    Maruta, K., Kazuki, A., Hasegawa, S., Maruyama, S., Sato, J., “Extinction Characteristics of CH4/CO2 Versus O2/CO2 Counter flow Non-premixed Flames at Elevated Pressure Up to 0.7 MPa”, Proceeding of the Combustion Institute, Vol. 31, pp.1223-1230, 2007
    Masri, A. R., Dibble, R. W., Barlow, R. S., “Chemical Kinetic Effects in Non-premixed Flames of H2/CO2 Fuel”, Combustion and Flame, Vol. 91, pp. 285-309, 1992
    Natarjan, J., Lieuwen, T., Seitzman, J.,“Laminar Flame Speeds of H2/COMixture: Effect of CO2 dilution, Preheat temperature, and Pressure”, Combustion and Flame, Vol. 151, pp. 104-109, 2007
    Oh Kuang Chul, Hyun Dong Shin, “The effect of oxygen and carbon dioxide concentration on soot formation in non-premixed flames”, Fuel, Vol. 85, pp. 615-624, 2006
    Patankar S. V., Numerical Heat Transfer And Fluid Flow, 1980
    Roper, F. G.,“The prediction of Laminar Jet Diffusion Flame Size” Combustion and Flame, Vol. 29, pp. 219-234, 1977
    Spalding, D. B., Combustion and Mass Transfer, Pergamon Press, New York, 1979
    Smooke M.D., C.S. MCENALLY, L.D. PFEFFERLE, “Computational and experimental study of a forced, time-dependent, methane–air coflow diffusion flame”, Combustion and Flame, Vol. 117, pp. 117-139, 1999
    Takahashi Fumiaki, Gregory T. Linteris, Viswanath R. Katta, “Extinguishment of methane diffusion flames by carbon dioxide in coflow air and oxygen-enriched microgravity environments”, Combustion and Flame, Vol. 155, pp. 37-53, 2008
    Takahashi Fumiaki, Gregory T. Linteris, Viswanath R. Katta, “Extinguishment mechanisms of coflow diffusion flames in a cup-burner apparatus”, Proceeding of the Combustion Institute, vol. 31, pp. 2721-2729, 2007
    Tan Y., E. Croiset, Mark A. Douglas, Kelly V. Thambimuthu, “Combustion characteristics of coal in a mixture of oxygen and recycled flue gas”, Fuel, Vol. 85, pp. 507-512, 2006
    Turns, S. R., An Introduction to Combustion: Concepts and Applications, McGraw-Hill, New York, 2000
    VAN D., RAITHBY G. D., “Enhancements of the SIMPLEC method for predicting incompressible fluid flow”, Numerical Heat Transfer, vol. 7, pp. 147-163, 1984
    Walsh Kevin T., Joseph FIELDING, Mitchell D. Smooke, Marshall B. Long, “Experimental and computational study of temperature, species, and soot in buoyant and non-buoyant coflow laminar diffusion flames”, Proceeding of the Combustion Institute, vol. 28, pp. 1973-1979, 2000
    Wang, C. S., Berry, G. F., Chung, K. C., and Wolsky, A. M.,“Combustion of Pulverized Coal Using Waste Carbon Dioxide and Oxygen ”, Combustion and Flame, Vol. 72, pp. 301-310,1988
    Wang, W. C., Y. H. Li., C. I. Hung., Y. C. Chao., “Numerical Investigation on the Non-reacting Flow Structures and Mixing in a Meso-Scale TPV Combustor with a Reverse Tube and a Porous medium injector”, Journal of Aeronautics,Astronautics and Aviation,Series A, Vol. 42, pp. 131-140,2010
    Wu Y., I.S. A1-Rahbi, Y. Lu, G.T. Kalghatgi, “The stability of turbulent hydrogen jet flames with carbon dioxide and propane addition”, Fuel, Vol. 86, pp. 1840-1848, 2007
    Zhu, D. L., Egolfopoulos, F. N., and Law, C. K.,“Experimental and Numerical Determination of Laminar flame Speeds of Methane/(Ar, N2, CO2)-Air mixture as Function of Stoichiometry, Pressure, and Flame Temperature ”, Proceeding of the Combustion Institute, vol. 22, pp. 1537-1545, 1988
    Zhu Lei Xue, Makihito, Tadao Takeno, “No emission characteristics of methane-air coflow partially premixed flame”, Proceeding of the Combustion Institute, pp. 1369-1376, 1998
    陳志鵬, “微噴流甲烷擴散火焰結構與穩駐機構之探討”, 國立成功大學航空太空工程研究所博士論文, 2007
    林河川, “貧油預混甲烷噴流火焰組平行交互作用之深入研究”, 國立成功大學航空太空工程研究所博士論文, 2009
    趙怡欽,許紘瑋,“從德國Schwarze Pumpe 零二氧化碳排放示範電廠看二氧化碳減量技術之發展”, 物理雙月刊,民國九十七年

    無法下載圖示 校內:2020-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE