簡易檢索 / 詳目顯示

研究生: 謝崇斌
Hsieh, Chung-Pin
論文名稱: 腦發育過程中IAP 與NRF-1 之表現與功能的分析:在發育中小腦顆粒細胞遷移與分化的角色
Expression and Functional Analysis of IAP and NRF-1 during Brain Development: the Role in Migration and Differentiation of Granular cells in the Developing Cerebellum
指導教授: 黃阿敏
Huang, A-Min
學位類別: 碩士
Master
系所名稱: 醫學院 - 生理學研究所
Department of Physiology
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 73
中文關鍵詞: 顆粒細胞遷移分化腦發育小腦
外文關鍵詞: granular cells, IAP, brain development, cerebellum, NRF-1, differentiation, migration
相關次數: 點閱:186下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Integrin-associated protein (IAP)是一個與記憶形成相關的細胞附著因子,越來越多的證據顯示IAP 調控了大腦與海馬迴神經培養細胞的分化。Nuclear respiratory factor-1 (NRF-1)是調控IAP 啟動子的重要轉錄因子,其同源蛋白在海膽、果蠅、與斑馬魚等
    物種參與神經發育的調控。我們先前的研究證實了NRF-1 可藉由調控IAP 基因表現而促進神經突生長,然而至今IAP 與NRF-1 在哺乳動物的腦發育所扮演的角色尚未
    清楚。原位雜合法結果顯示在ICR 小鼠發育過程中, IAP mRNA 廣泛地表現在全腦,尤其在分化中的大腦、海馬迴、丘腦、與小腦。在小腦的發育過程中,IAP mRNA 及蛋白質的表現明顯地隨著小腦顆粒前驅細胞由外顆粒層遷移至內顆粒層而有所變化。免疫組織法分析了IAP 蛋白質在發育中小腦的分布,IAP 表現在分子層、內顆粒層與TAG-1 所辨認的外顆粒層內層。高度表現的IAP 被發現在分子層,且GFAP 未與IAP 同處表現排除了IAP 表現在Bergma glial cells 的radial fibers。而IAP mRNA 在內顆粒層及蛋白質在分子層和內顆粒層的表現也隨著小腦發育而增加,並在成熟的小腦中維持高度的表現。Electrophoretic mobility shift analysis 顯示NRF-1 在含有IAP 啟動子之DNA 結合能力也與發育中小腦的IAP mRNA 與蛋白質表現一致。另外在小腦神經培養細胞中,降低IAP 的表現或競爭掉NRF-1 的功能皆明顯減少神經突的數目與長度。這些結果顯示IAP 與其調控因子NRF-1 參與了腦的發育,尤其在發育中的小腦對小腦顆粒前驅細胞扮演了遷移與分化的角色。

    Integirn-associated protein (IAP) is a cell adhesion molecule related to the memory formation. Increasing evidence shows that IAP regulates neuronal differentiation in primary cortical and hippocampal cultured neurons. Nuclear respiratory factor-1 (NRF-1) is a critical transcription factor regulating IAP promoter activity. The homologues of NRF-1 in sea urchin, drosophila, and zebra fish involve in neuronal development. Our previous studies have found that NRF-1 promotes neurite outgrowth in human neuroblastoma cells, which is mediated by the expression of the IAP gene. However, the
    roles of NRF-1 and IAP in mammalian brain development are unclear. Using in situ hybridization we found that IAP mRNA was widely expressed in differentiating cortex, hippocampus, thalamus, and cerebellum in ICR mice during development. In developing
    cerebellum, the expression of IAP mRNA and protein were accompanied with the
    migration of granular cell precursors (GCPs) from external granular layer (EGL) to internal
    granular layer (IGL) at postnatal stages. Immunohistochmistry analysis showed that the
    distribution of IAP protein in developing cerebellum was expressed in molecular layer (ML), IGL, and the inner layer of EGL. Colocalization of IAP with TAG-1 suggested that
    IAP is expressed in postmitotic GCPs. Expression of IAP mRNA in IGL or protein in ML and IGL were gradually increased during cerebellar development and maintained high level in mature cerebellum. Electrophoretic mobility shift analysis showed the DNA binding activity of NRF-1 on the IAP promoter was highly correlated with IAP mRNA and protein expression during the development of cerebellum. Additionally, down-regulation of IAP and competition of NRF-1 function reduced the neurite number and length. These results suggest that IAP and its transcription factor NRF-1 involves in brain development, especially in the migration and differentiation of GCPs in the development of cerebellum.

    Acknowledge...................................................................1 摘要..........................................................................3 Abstract......................................................................4 Table of Contents.............................................................5 List of Tables and Figures....................................................7 Introduction..................................................................8 1. Integrin-associated protein (IAP) 1.1 The structure of IAP......................................................8 1.2 The functions of IAP in peripheral tissues................................9 1.3 The function of IAP in memory formation...................................9 1.4 The function of IAP in neural differentiation.............................9 2. Nuclear respiratory factor-1 (NRF-1) 2.1 The structure of NRF-1...................................................10 2.2 Regulation of mitochondrial genes by NRF-1...............................11 2.3 Regulation of nuclear genes by NRF-1.....................................12 2.4 Involvement of NRF-1 homologues in neuronal development..................13 2.5 The role of NRF-1 in neurite outgrowth...................................15 3. The relationship of NRF-1 and IAP 3.1 NRF-1 is a critical transcription factor for IAP promoter activity.......15 3.2 NRF-1 promoted neurite outgrowth mediated by IAP gene expression.........15 4. Specific aims.............................................................16 Materials and Methods 1. Animals...................................................................17 2. In situ hybridization.....................................................17 3. Immunohistochemistry......................................................23 4. Electrophoretic mobility shift analysis (EMSA)............................24 5. Neurite measurement.......................................................28 Results In situ hybridization analysis of IAP gene expression during development.....31 In situ hybridization analysis of IAP gene expression during cerebellar development..................................................................32 Immunohistochemistry analysis of IAP protein expression during cerebellar development..................................................................33 IAP was expressed in the postmitotic GCPs in the inner layer of EGL..........34 IAP protein levels maintain very high in mature cerebellum...................34 The DNA binding activity of NRF-1 during cerebellar development..............35 The neurite differentiation was also regulated by IAP........................35 NRF-1 could regulate neurite outgrowth in the cerebellar neuron..............37 Discussion 1. IAP is involved in the migration of GCPs from EGL to IGL..................39 2. IAP is involved in the neurite differentiation of cerebellar neurons......43 3. The relationship of IAP and NRF-1 in the cerebellar development...........45 4. IAP expression maintains high in the matured cerebellum...................46 5. The expression of IAP in the embryonic peripheral tissues.................48 Conclusion...................................................................49 References...................................................................50 About the Author (自述)......................................................73

    Arber S, Caroni P (1995) Thrombospondin-4, an extracellular matrix protein expressed in the developing and adult nervous system promotes neurite outgrowth. J Cell Biol 131:1083-1094.
    Bai X, Wong-Riley MT (2003) Neuronal activity regulates protein and gene expressions of GluR2 in postnatal rat visual cortical neurons in culture. J Neurocytol 32:71-78.
    Becker TS, Burgess SM, Amsterdam AH, Allende ML, Hopkins N (1998) not really
    finished is crucial for development of the zebrafish outer retina and encodes a
    transcription factor highly homologous to human Nuclear Respiratory Factor-1 and avian Initiation Binding Repressor. Development 125:4369-4378.
    Brown E, Hooper L, Ho T, Gresham H (1990) Integrin-associated protein: a 50-kD plasma membrane antigen physically and functionally associated with integrins. J Cell Biol 111:2785-2794.
    Brown EJ, Frazier WA (2001) Integrin-associated protein (CD47) and its ligands. Trends Cell Biol 11:130-135.
    Calzone FJ, Hoog C, Teplow DB, Cutting AE, Zeller RW, Britten RJ, Davidson EH (1991) Gene regulatory factors of the sea urchin embryo. I. Purification by affinity chromatography and cloning of P3A2, a novel DNA-binding protein. Development 112:335-350.
    Cam H, Balciunaite E, Blais A, Spektor A, Scarpulla RC, Young R, Kluger Y, Dynlacht BD (2004) A common set of gene regulatory networks links metabolism and growth inhibition. Mol Cell 16:399-411.
    Cameron RA, Britten RJ, Davidson EH (1989) Expression of two actin genes during larval development in the sea urchin Strongylocentrotus purpuratus. Mol Reprod Dev 1:149-155.
    Chang HP, Lindberg FP, Wang HL, Huang AM, Lee EH (1999) Impaired memory retention and decreased long-term potentiation in integrin-associated protein-deficient mice. Learn Mem 6:448-457.
    Chang HP, Ma YL, Wan FJ, Tsai LY, Lindberg FP, Lee EH (2001) Functional blocking of integrin-associated protein impairs memory retention and decreases glutamate release from the hippocampus. Neuroscience 102:289-296.
    Chang WT, Huang AM (2004) Alpha-Pal/NRF-1 regulates the promoter of the human
    integrin-associated protein/CD47 gene. J Biol Chem 279:14542-14550.
    Chang WT, Chen HI, Chiou RJ, Chen CY, Huang AM (2005) A novel function of
    transcription factor alpha-Pal/NRF-1: increasing neurite outgrowth. Biochem Biophys Res Commun 334:199-206.
    Chizhikov V, Millen KJ (2003) Development and malformations of the cerebellum in mice. Mol Genet Metab 80:54-65.
    Choi Y, Borghesani PR, Chan JA, Segal RA (2005) Migration from a mitogenic niche promotes cell-cycle exit. J Neurosci 25:10437-10445.
    Chung J, Gao AG, Frazier WA (1997) Thrombspondin acts via integrin-associated protein to activate the platelet integrin alphaIIbbeta3. J Biol Chem 272:14740-14746.
    Comu S, Weng W, Olinsky S, Ishwad P, Mi Z, Hempel J, Watkins S, Lagenaur CF,
    Narayanan V (1997) The murine P84 neural adhesion molecule is SHPS-1, a
    member of the phosphatase-binding protein family. J Neurosci 17:8702-8710.
    Cox KH, Angerer LM, Lee JJ, Davidson EH, Angerer RC (1986) Cell lineage-specific programs of expression of multiple actin genes during sea urchin embryogenesis. J Mol Biol 188:159-172.
    DeSimone SM, White K (1993) The Drosophila erect wing gene, which is important for both neuronal and muscle development, encodes a protein which is similar to the sea urchin P3A2 DNA binding protein. Mol Cell Biol 13:3641-3649.
    Dorahy DJ, Thorne RF, Fecondo JV, Burns GF (1997) Stimulation of platelet activation and aggregation by a carboxyl-terminal peptide from thrombospondin binding to the integrin-associated protein receptor. J Biol Chem 272:1323-1330.
    Efiok BJ, Safer B (2000) Transcriptional regulation of E2F-1 and eIF-2 genes by alpha-pal: a potential mechanism for coordinated regulation of protein synthesis, growth, and the cell cycle. Biochim Biophys Acta 1495:51-68.
    Fleming RJ, DeSimone SM, White K (1989) Molecular isolation and analysis of the erect wing locus in Drosophila melanogaster. Mol Cell Biol 9:719-725.
    Furusawa T, Yanai N, Hara T, Miyajima A, Obinata M (1998) Integrin-associated protein (IAP, also termed CD47) is involved in stroma-supported erythropoiesis. J Biochem (Tokyo) 123:101-106.
    Gao AG, Lindberg FP, Dimitry JM, Brown EJ, Frazier WA (1996) Thrombospondin
    modulates alpha v beta 3 function through integrin-associated protein. J Cell Biol 135:533-544.
    Gomez-Cuadrado A, Martin M, Noel M, Ruiz-Carrillo A (1995) Initiation binding
    repressor, a factor that binds to the transcription initiation site of the histone h5 gene, is a glycosylated member of a family of cell growth regulators [corrected].
    Mol Cell Biol 15:6670-6685. Gugneja S, Scarpulla RC (1997) Serine phosphorylation within a concise amino-terminal domain in nuclear respiratory factor 1 enhances DNA binding. J Biol Chem 272:18732-18739.
    Gundappa-Sulur G, De Schutter E, Bower JM (1999) Ascending granule cell axon: an important component of cerebellar cortical circuitry. J Comp Neurol 408:580-596.
    Hermann P, Armant M, Brown E, Rubio M, Ishihara H, Ulrich D, Caspary RG, Lindberg FP, Armitage R, Maliszewski C, Delespesse G, Sarfati M (1999) The vitronectin receptor and its associated CD47 molecule mediates proinflammatory cytokine synthesis in human monocytes by interaction with soluble CD23. J Cell Biol 144:767-775.
    Hough-Evans BR, Britten RJ, Davidson EH (1988) Mosaic incorporation and regulated expression of an exogenous gene in the sea urchin embryo. Dev Biol 129:198-208.
    Huang AM, Wang HL, Tang YP, Lee EH (1998) Expression of integrin-associated protein gene associated with memory formation in rats. J Neurosci 18:4305-4313.
    Jacob WF, Silverman TA, Cohen RB, Safer B (1989) Identification and characterization of a novel transcription factor participating in the expression of eukaryotic initiation factor 2 alpha. J Biol Chem 264:20372-20384.
    Jiang P, Lagenaur CF, Narayanan V (1999) Integrin-associated protein is a ligand for the P84 neural adhesion molecule. J Biol Chem 274:559-562.
    Kelly DP, Scarpulla RC (2004) Transcriptional regulatory circuits controlling
    mitochondrial biogenesis and function. Genes Dev 18:357-368.
    Kenney AM, Rowitch DH (2000) Sonic hedgehog promotes G(1) cyclin expression and
    sustained cell cycle progression in mammalian neuronal precursors. Mol Cell Biol 20:9055-9067.
    Kerjan G, Dolan J, Haumaitre C, Schneider-Maunoury S, Fujisawa H, Mitchell KJ,
    Chedotal A (2005) The transmembrane semaphorin Sema6A controls cerebellar
    granule cell migration. Nat Neurosci 8:1516-1524.
    Kherrouche Z, De Launoit Y, Monte D (2004) The NRF-1/alpha-PAL transcription factor regulates human E2F6 promoter activity. Biochem J 383:529-536.
    Kleim JA, Vij K, Ballard DH, Greenough WT (1997) Learning-dependent synaptic
    modifications in the cerebellar cortex of the adult rat persist for at least four weeks. J Neurosci 17:717-721.
    Komuro H, Yacubova E (2003) Recent advances in cerebellar granule cell migration. Cell Mol Life Sci 60:1084-1098.
    Kumari D, Gabrielian A, Wheeler D, Usdin K (2005) The roles of Sp1, Sp3, USF1/USF2 and NRF-1 in the regulation and three-dimensional structure of the Fragile X mental retardation gene promoter. Biochem J 386:297-303.
    Kyriakides TR, Zhu YH, Yang Z, Bornstein P (1998) The distribution of the matricellular protein thrombospondin 2 in tissues of embryonic and adult mice. J Histochem Cytochem 46:1007-1015.
    Liang HL, Wong-Riley MT (2006) Activity-dependent regulation of nuclear respiratory factor-1, nuclear respiratory factor-2, and peroxisome proliferator-activated receptor gamma coactivator-1 in neurons. Neuroreport 17:401-405.
    Lindberg FP, Bullard DC, Caver TE, Gresham HD, Beaudet AL, Brown EJ (1996)
    Decreased resistance to bacterial infection and granulocyte defects in IAP-deficient mice. Science 274:795-798.
    Mi ZP, Jiang P, Weng WL, Lindberg FP, Narayanan V, Lagenaur CF (2000) Expression of a synapse-associated membrane protein, P84/SHPS-1, and its ligand, IAP/CD47, in mouse retina. J Comp Neurol 416:335-344.
    Miyashita M, Ohnishi H, Okazawa H, Tomonaga H, Hayashi A, Fujimoto TT, Furuya N, Matozaki T (2004) Promotion of neurite and filopodium formation by CD47: roles of integrins, Rac, and Cdc42. Mol Biol Cell 15:3950-3963.
    Moriuchi M, Moriuchi H, Turner W, Fauci AS (1997) Cloning and analysis of the promoter region of CXCR4, a coreceptor for HIV-1 entry. J Immunol 159:4322-4329.
    Murata T, Ohnishi H, Okazawa H, Murata Y, Kusakari S, Hayashi Y, Miyashita M, Itoh H, Oldenborg PA, Furuya N, Matozaki T (2006) CD47 promotes neuronal
    development through Src- and FRG/Vav2-mediated activation of Rac and Cdc42. J
    Neurosci 26:12397-12407.
    Myers SJ, Peters J, Huang Y, Comer MB, Barthel F, Dingledine R (1998) Transcriptional regulation of the GluR2 gene: neural-specific expression, multiple promoters, and regulatory elements. J Neurosci 18:6723-6739.
    Numakawa T, Ishimoto T, Suzuki S, Numakawa Y, Adachi N, Matsumoto T, Yokomaku D, Koshimizu H, Fujimori KE, Hashimoto R, Taguchi T, Kunugi H (2004) Neuronal
    roles of the integrin-associated protein (IAP/CD47) in developing cortical neurons. J Biol Chem 279:43245-43253.
    O'Shea KS, Rheinheimer JS, Dixit VM (1990) Deposition and role of thrombospondin in the histogenesis of the cerebellar cortex. J Cell Biol 110:1275-1283.
    Ohnishi H, Kaneko Y, Okazawa H, Miyashita M, Sato R, Hayashi A, Tada K, Nagata S, Takahashi M, Matozaki T (2005) Differential localization of Src homology 2
    domain-containing protein tyrosine phosphatase substrate-1 and CD47 and its
    molecular mechanisms in cultured hippocampal neurons. J Neurosci 25:2702-2711.
    Oliver TG, Read TA, Kessler JD, Mehmeti A, Wells JF, Huynh TT, Lin SM, Wechsler-Reya RJ (2005) Loss of patched and disruption of granule cell development in a pre-neoplastic stage of medulloblastoma. Development 132:2425-2439.
    Patel DD, Haynes BF (1993) Cell adhesion molecules involved in intrathymic T cell development. Semin Immunol 5:282-292.
    Patel DD, Whichard LP, Radcliff G, Denning SM, Haynes BF (1995 Characterization of human thymic epithelial cell surface antigens: phenotypic similarity of thymic epithelial cells to epidermal keratinocytes. J Clin Immunol 15:80-92.
    Pieretti M, Zhang FP, Fu YH, Warren ST, Oostra BA, Caskey CT, Nelson DL (1991)
    Absence of expression of the FMR-1 gene in fragile X syndrome. Cell 66:817-822.
    Rakic P, Cameron RS, Komuro H (1994) Recognition, adhesion, transmembrane signaling and cell motility in guided neuronal migration. Curr Opin Neurobiol 4:63-69.
    Reinhold MI, Lindberg FP, Kersh GJ, Allen PM, Brown EJ (1997) Costimulation of T cell activation by integrin-associated protein (CD47) is an adhesion-dependent, CD28-independent signaling pathway. J Exp Med 185:1-11.
    Scarpulla RC (2002) Nuclear activators and coactivators in mammalian mitochondrial biogenesis. Biochim Biophys Acta 1576:1-14.
    Solecki D, Bernhardt G, Lipp M, Wimmer E (2000) Identification of a nuclear respiratory factor-1 binding site within the core promoter of the human polio virus receptor/CD155 gene. J Biol Chem 275:12453-12462.
    Sotelo C (2004) Cellular and genetic regulation of the development of the cerebellar system. Prog Neurobiol 72:295-339.
    Super H, Uylings HB (2001) The early differentiation of the neocortex: a hypothesis on neocortical evolution. Cereb Cortex 11:1101-1109.
    Takacs J, Hamori J (1994) Developmental dynamics of Purkinje cells and dendritic spines in rat cerebellar cortex. J Neurosci Res 38:515-530.
    Tam T, Mathews E, Snutch TP, Schafer WR (2000) Voltage-gated calcium channels direct neuronal migration in Caenorhabditis elegans. Dev Biol 226:104-117.
    Virbasius CA, Virbasius JV, Scarpulla RC (1993) NRF-1, an activator involved in
    nuclear-mitochondrial interactions, utilizes a new DNA-binding domain conserved
    in a family of developmental regulators. Genes Dev 7:2431-2445.
    Wang C, Li Z, Lu Y, Du R, Katiyar S, Yang J, Fu M, Leader JE, Quong A, Novikoff PM, Pestell RG (2006) Cyclin D1 repression of nuclear respiratory factor 1 integrates nuclear DNA synthesis and mitochondrial function. Proc Natl Acad Sci U S A 103:11567-11572.
    Wang XQ, Frazier WA (1998) The thrombospondin receptor CD47 (IAP) modulates and
    associates with alpha2 beta1 integrin in vascular smooth muscle cells. Mol Biol
    Cell 9:865-874.
    Wegner SA, Ehrenberg PK, Chang G, Dayhoff DE, Sleeker AL, Michael NL (1998)
    Genomic organization and functional characterization of the chemokine receptor
    CXCR4, a major entry co-receptor for human immunodeficiency virus type 1. J
    Biol Chem 273:4754-4760.
    Wolfer DP, Henehan-Beatty A, Stoeckli ET, Sonderegger P, Lipp HP (1994) Distribution of TAG-1/axonin-1 in fibre tracts and migratory streams of the developing mouse nervous system. J Comp Neurol 345:1-32.
    Wong TP, Campbell PM, Ribeiro-da-Silva A, Cuello AC (1998) Synaptic numbers across cortical laminae and cognitive performance of the rat during ageing. Neuroscience 84:403-412.
    Wu AL, Wang J, Zheleznyak A, Brown EJ (1999) Ubiquitin-related proteins regulate interaction of vimentin intermediate filaments with the plasma membrane. Mol Cell 4:619-625.
    Yacubova E, Komuro H (2003) Cellular and molecular mechanisms of cerebellar granule cell migration. Cell Biochem Biophys 37:213-234.
    Yang SJ, Liang HL, Wong-Riley MT (2006) Activity-dependent transcriptional regulation of nuclear respiratory factor-1 in cultured rat visual cortical neurons. Neuroscience 141:1181-1192.
    Yoshida H, Tomiyama Y, Ishikawa J, Oritani K, Matsumura I, Shiraga M, Yokota T,
    Okajima Y, Ogawa M, Miyagawa J, Nishiura T, Matsuzawa Y (2000)
    Integrin-associated protein/CD47 regulates motile activity in human B-cell lines through CDC42. Blood 96:234-241.

    下載圖示 校內:2009-01-29公開
    校外:2009-01-29公開
    QR CODE