簡易檢索 / 詳目顯示

研究生: 劉昶賢
Liu, Chang-Xian
論文名稱: 汽車座艙空調系統對乘客之熱舒適性研究
Study of Thermal Comfort for Passengers in an Air-Conditional Automobile Cabin
指導教授: 梁勝明
Liang, Shen-min
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 125
中文關鍵詞: 熱舒適性
外文關鍵詞: Thermal Comfort, PMV, PPD
相關次數: 點閱:52下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現代生活水平提昇,汽車也不再只是以往單純的代步工具,更多的功能、更好的品質、更加的舒適性皆為汽車發展的趨勢。本文中將對於車艙內的熱舒適性做研究,以實驗搭配數值計算的方式來得到PMV指標與PPD指標的參數,並計算各乘客的熱舒適性指標與最佳溫度。在實驗方面,實驗車款是Nissan Sentra 2000房車,車艙內空調系統設定在25°C,並分為無乘客時與有乘客時共三個不同的實驗,並在各實驗中對冷氣出風口在不同等級出風量時,做溫度與出風口風速與相對濕度的量測。在數值模擬方面,是採用商用套裝軟體FLUENT,在不考慮化學反應、重力及輻射熱傳下,以SST(Shear-Stress Transport) K-ω紊流模式,並將實驗量測到的邊界溫度與出風口風速代入做計算求解車艙內的流場與溫度場,再將計算的溫度場與各量測點量到的溫度做比對,以驗證模擬的正確性。最後便可由模擬的車艙內流場得到的相對風速,搭配實驗量到的相對濕度,進而求出PMV指標與PPD指標與最佳溫度。由模擬結果得知,每組模擬與實驗的溫度平均誤差階小於3°C。結果顯示空車時模擬非穩態的溫度對時間變化與實際量測的大致相符合。而在熱舒適性評估方面,從有駕駛員的實驗與數值模擬結果可以發現,當出風口向下吹時,所預測的最佳溫度最高,而出風口向上吹時,所預測的最佳溫度最低;在有四位乘客的實驗與數值模擬中可以發現,坐在前座乘客座的人所需的最佳溫度會較其他三人高約0.2至0.8°C。

    With the increase of living standard nowadays, automobiles are not only a mean of transportation tool but also equipped more capability functions, better quality and much comfort. In this study, by using experiment and numerical simulation, thermal comfort for passengers in an air-conditioned automobile cabin is numerically investigated with a PMV indicator and a PPD indicator for finding a best temperature. For the experiment part, the model of an experimental car used is a car of Nissan Sentra 2000. The air conditioning system in the cabin was set at 25°C. There were three different cases of experiments: empty car, a driver in the cabin, and four passengers in the cabin. In each case, temperature, wind velocity at the fan and relative humidity were measured in different fan levels. In the numerical simulation part, the commercial software FLUENT were used. Without regard to chemical reaction, gravity and radiant heat transfer, the boundary temperature and the wind velocity at fan measured by experiment were the inputs for calculation in the K-ω turbulent model. For code validation, the temperatures calculated by numerical simulation were compared with these for experiment. Finally, the air velocity found by numerical simulation and the relative humidity measured by experiment, we can find the values of the PMV indicator, PPD indicator, and best temperature. From our simulation results, computed temperature distribution for each case is compared well with that in experiment, and their difference measured by mean error is less than 3°C. The computed and experimental temperatures in unsteady case are very close for the case of empty car. For the evaluation of thermal comfort, it is found that for the case of upward-direction fan, the predicted best temperature is the highest. But, for the case of downward-direction fan, the predicted best temperature is the lowest. For the case of four passengers seated in the cabin, the best temperature for man who seated in passenger’s seat is slight higher (0.2 to 0.8°C) than others.

    中文摘要 ………………………………………………………… I 英文摘要 ………………………………………………………… III 誌謝 ……………………………………………………………… V 目錄 ……………………………………………………………… VI 表目錄 …………………………………………………………… X 圖目錄 …………………………………………………………… XII 符號說明 ………………………………………………………… XVI 第一章 緒 論 ………………………………………………… 1 §1.1 前言 ……………………………………………………… 1 §1.2 研究動機與方法 ………………………………………… 2 §1.3 文獻回顧…………………………………………………… 2 第二章 熱舒適性概論 ………………………………………… 8 §2.1 人體與周圍環境的能量平衡方程式 …………………… 8 §2.2 衣服的熱絕緣值 ………………………………………… 10 §2.3 PMV指標 ………………………………………………… 11 §2.4 PPD指標 ………………………………………………… 12 §2.5 PPD指標與PMV指標對應關係………………………… 13 §2.6 求解PPD指標與PMV指標與最佳溫度………………… 13 第三章 數學模式與數值方法 ………………………………… 15 §3.1 車艙外型與網格的建立 ………………………………… 15 §3.2 數學模式 ………………………………………………… 17 §3.3 數值方法 ………………………………………………… 19 §3.4 UDF自訂函數 …………………………………………… 23 §3.5 邊界條件與收斂條件設定 ……………………………… 24 第四章 實驗設備與方法 ……………………………………… 26 §4.1 實驗車輛 ………………………………………………… 26 §4.2 風速量測設備 …………………………………………… 26 §4.3 溫度量測設備 …………………………………………… 27 §4.3-1 熱電偶(Thermocouple)…………………………… 27 §4.3-2 資料擷取器…………………………………………… 28 §4.3-3 溫度量測設備架設方法……………………………… 28 §4.4 溼度量測設備 …………………………………………… 28 §4.5 自製簡易仰角器 ………………………………………… 29 §4.6 實驗方法 ………………………………………………… 29 §4.6-1 空車時之實驗方法…………………………………… 29 §4.6-2 駕駛員乘坐於駕駛座時之實驗方法………………… 30 §4.6-3 四位乘客乘坐車艙內時之實驗方法………………… 31 第五章 結果與討論 …………………………………………… 32 §5.1 物理問題描述 …………………………………………… 32 §5.2 冷氣出風口風速與擺動角度量測 ……………………… 33 §5.3 車室內的溼度量測 ……………………………………… 33 §5.4 數值模擬驗證 …………………………………………… 34 §5.5 空車實驗之非穩態溫度隨時間變化 …………………… 35 §5.6 空車實驗之車艙內流場分析 …………………………… 35 §5.7 空車實驗之車艙內溫度場分析 ………………………… 36 §5.8 駕駛乘坐車艙內時之車艙內溫度場分析 ……………… 37 §5.9 駕駛員乘坐車艙內時之車艙內熱舒適性分析 ………… 39 §5.10 四位乘客乘坐於車艙內時實驗與數值計算之溫度比對 40 §5.11 四位乘客乘坐於車艙之非穩態溫度場分析 …………… 40 §5.12 四位乘客乘坐於車艙之穩態溫度場分析 ……………… 41 §5.13 四位乘客乘坐於車艙之熱舒適性分析 ………………… 42 第六章 結 論 ………………………………………………… 44 §6.1 結論 ……………………………………………………… 44 §6.2 未來工作與建議 ………………………………………… 45 參考文獻 ………………………………………………………… 46 自述 ……………………………………………………………… 125

    [1] P. O. Fanger, A. K. Melikov, H. Hanzawa, and J. Ring, “Air turbulence and Sensation of Draught,” Energy and Buildings, Vol. 12, pp. 21-39, 1988.
    [2] P. O. Fanger, “The New Comfort Equation for Indoor Air Quality,” ASHRAE J., Vol. 31, pp. 33-38, 1989.
    [3] G. Gan, “Evaluation of Room Air Distribution Systems Using Computational Fluid Dynamics,” Energy and Buildings, Vol. 23, pp. 83-93, 1995.
    [4] J. Kang and S. Park, “Development of Comfort Sensing System for Human Environment,” Mechatronics, Vol. 8, pp. 459-466, 1998.
    [5] J. Kang and S. Park, “Integrated Comfort Sensing System on Indoor Climate,” Sensors and Actuators, Vol. 82, pp. 302-307, 2000.
    [6] T. Komoriya, “Prediction Method of Passenger’s Thermal Sensation by Numerical Simulation of Air Flow in an Automobile Passenger Compartment,” JSAE Review, Vol. 16, p. 315, 1995.
    [7] K. Kojima, Y. Adachi, S. Itoh, H. Ohtaki, and K. Watanuki, “An Estimate of Temperature in a Passenger Compartment by Numerical Simulation Using Linear Graph Theory,” JSAE Review, Vol. 18, p. 205, 1997.
    [8] O. Kaynakli and M. Kilic, “An Investigation of Thermal Comfort inside an Automobile during the Heating Period,” Applied Ergonomics, Vol. 36, pp. 301-312, 2005.
    [9] H. Wang, C. Huang, Z. Liu, G. Tang, Y. Liu, and Z. Wang, “Dynamic Evaluation of Thermal Comfort Environment of Air-Conditioned Buildings,” Building & Environment, Vol. 41, 2005.
    [10] G. Gan, “Numerical Evaluation of Thermal Comfort in Rooms with Dynamic Insulation,” Building & Environment, Vol. 35, 2005.
    [11] M. C. G. da Silva, “Measurements of Comfort in Vehicles,” Measurement Science and Technology, Vol. 13, 2002.
    [12] F. Nicol, “Adaptive Thermal Comfort Standards in the Hot-humid Tropics,” Energy and Buildings, Vol. 36, pp. 628-637, 2004.
    [13] R. L. Hwang, T. P. Lin, and N. J. Kuo, “Field Experiments on Thermal Comfort in Campus Classrooms in Taiwan,” Energy and Buildings, Vol. 38, pp. 53-62, 2005.
    [14] M. Kilic, O. Kaynakli, and R. Yamankaradeniz, “Determination of Required Core Temperature for Thermal Comfort with Steady-state Energy Balance Method,” International Communications in Heat and Mass Transfer, Vol. 33, pp. 199-210, 2006.
    [15] M. S. Jang, C. D. Koh, and I. S. Moon, “Review of Thermal Comfort Design Based on PMV/PPD in Cabins of Korean Maritime Patrol Vessels,” Building and Environment, Vol. 42, pp. 55-61, 2007.
    [16] H. Chen, W. T. Chung, and S. M. Liang, “Numerical Simulation of Air Conditioning Flow Field in the Automobile Cabin,” the 12th National Computational Fluid Dynamics Conference, CFD12-2209, 2005.
    [17] H. Chen, W. T. Chung, and S. M. Liang, “Numerical Investigation of Air-Conditioned Flow Field in an Automobile Cabin with Parallel Unstructured Navier-Stokes Solver,” Int. Conf. on Parallel Comp. Fluid Dynamics 2006,” Busan, Korea, pp. 335-338, 2006.
    [18] C. Chen, W. T. Chung, S. M. Liang, “Numerical Simulation of Air- Conditioned Flow Field in an Automobile Cabin,” Journal of Aeronautic, Astronautic and Aviation, Vol. 38, No. 4, pp. 281-288, 2006.
    [19] H. Chen, W. T. Chung, S. M. Liang, and C. X. Liu, “Numerical and Experimental Study of Predicting Thermal Comfort in an Automobile Cabin,” the 11th National Conference on Vehicle Engineering,Taiwan, November 2006.
    [20] 梁智創, 張金龍, 洪宗義, “車內空調風口配置分析,” 第十一屆車輛工程學術研討會, 大葉大學,機械與自動化工程學系, 彰化, 2006.
    [21] 王俊雄, 林顯群, 羅玉山, 周永泰, “房車內乘客舒適度之數值模擬,” 第十一屆車輛工程學術研討會, 大葉大學,機械與自動化工程學系, 彰化, 2006.
    [22] 鄭志, “汽車室內空調之三維熱傳分析,” 碩士論文, 機械工程學系, 國立成功大學, 2006.
    [23] 王保, “汽車空氣調節,” 正文出版社, 台北, 1984.
    [24]黃靖雄, “汽車學(一)汽油引擎篇,” 正工出版社, 台北, 1986.
    [25] J. Piquet, Turbulent Flows: Models and Physics, Springer-Verlag, New York, 1999.
    [26] S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, New York, 1980.
    [27] “Thermal Comfort”, 1997 ASHARE Handbook: Fundamental.
    [28] Fluent 6.1 User’s Guide, Fluent Inc., Lebanon, NH, 2003.
    [29] Fluent 6.2 User’s Guide, Fluent Inc., Lebanon, NH, 2005.
    [30] Fluent 6.2 Tutorial Guide, Fluent Inc., Lebanon, NH, 2005.
    [31] Gambit User’s Guide, Fluent Inc., Lebanon, NH, 2006.
    [32] Gambit Tutorial Guide, Fluent Inc., Lebanon, NH, 2006.

    下載圖示 校內:2008-07-12公開
    校外:2008-07-12公開
    QR CODE