| 研究生: |
歐陽中彥 Ouyang, Jung-Yan |
|---|---|
| 論文名稱: |
論二元極自對偶碼的分類 On the Classification of Binary Extremal Self-dual Codes |
| 指導教授: |
俞勇
Yu, Yung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系應用數學碩博士班 Department of Mathematics |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 英文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 二元極自對偶碼 |
| 外文關鍵詞: | weight enumerators, binary extremal self-dual codes |
| 相關次數: | 點閱:93 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
none
The object of this study is mainly discuss the binary extremal self-dual codes. For Type I codes, we are going to investigate the weight enumerators and relative data from length 2 to length 100. For Type II codes, we investigate those from length 8 to length 96.
[1] A. Baartmans and V. Yorgov, “Some new extremal codes of length 76 and 78,” IEEE Trans. Inform. Theory, vol. 49, pp. 1353-1354, 2003.
[2] W. Bosma and J. Cannon, Handbook of Magma functions, Styney, 1995.
[3] R. A. Brualdi and V. S. Pless, “Weight enumerators of self-dual codes,”
IEEE Trans. Inform. Theory, vol. 37, pp. 1222-1225, 1991.
[4] F. C. Bussemaker and V. D. Tonchev, “New extremal doubly-even codes of length 56 derived from Hadamard matrices of order 28,” Discr. Math., vol. 76, pp. 45-49, 1989.
[5] S. Buyuklieva, “Existence of certain extremal self-dual codes of lengths 42 and 44,” in Proc. Optimal Codes and Related Topics (Bulgaria), pp. 29-31, 1995.
[6] S. Buyuklieva, “On the binary self-dual codes with an automorphism of order 2,” Des. Codes and Cryptogr., to be published.
[7] S. Buyuklieva, “A method for constructing self-dual codes with applications to length 64,” preprint.
[8] S. Bouyuklieva, “A method for constructing self-dual codes with an automorphism of order 2,” IEEE Trans. Inform. Theory, vol. 46, pp. 496-504, 2000.
[9] S. Buyuklieva and V. Yorgov, “Singly-even self-dual codes of length 40,” Des. Codes and Cryptogr., vol. 9, pp. 131-141, 1996.
[10] S. Buyuklieva and I. Boukliev, “Extremal self-dual codes with an automorphism of order 2,” IEEE Trans. Inform. Theory, vol. 44, pp. 323-328, 1998.
[11] S. Buyuklieva and I. Boukliev, “Some new extremal self-dual codes with length 44, 50, 54, and 58,” IEEE Trans. Inform. Theory, vol. 44, pp. 809-812, 1998.
[12] J. H. Conway and V. Pless, “On the enumerator of self-dual codes” J. Combin. Theory Ser. A, vol. 28, pp. 26-53, 1980.
[13] J. H. Conway, V. Pless, and N. J. A. Sloane, “The binary self-dual codes of length up to 32 : A revised enumeration,” J. Combin. Theory Ser. A, vol. 60, pp. 183-195, 1992.
[14] J. H. Conway and N. J. A. Sloane, “A new upper bound on the minimal distance of self-dual codes,” IEEE Trans. Inform. Theory, vol. 36, pp. 1319-1333, 1990.
[15] S. T. Dougherty and M. Harada, “Extremal doubly-even self-dual codes of length a multiple of 24,” submitted for publication.
[16] S. T. Dougherty, T, A. Gulliver, and M. Harada, “Extremal binary self-dual codes,” IEEE Trans. Inform. Theory, vol. 43, pp. 2036-2047, 1997.
[17] T. A. Gulliver, “Construction of quasicyclic codes,” Ph. D. dissertation, Univ. of Victoria, Victoria, BC, Canada, 1989.
[18] T. A. Gulliver and M. Harada, “Weight enumerators of extremal singly-even [60,30,12] codes,” IEEE Trans. Inform. Theory, vol. 42, pp. 658-659, 1996.
[19] T. A. Gulliver and M. Harada, “Weight enumerators of double circulant codes and new extremal self-dual codes,” Des. Codes and Cryptogr., vol. 11, pp. 141-150, 1997.
[20] T. A. Gulliver and M. Harada, “Classification of extremal double circulant self-dual codes of length 64 to 72,” submitted for publication.
[21] T. A. Gulliver, M. Harada, and J.-L. Kim, “Construction of some extremal self-dual codes,” Discr. Math., vol. 263, pp. 81-91, 2003.
[22] M. Hall, Jr. , Combinatorial Theory, 2nd ed. New York : Wiley, 1986.
[23] M. Harada, “Existence of new extremal doubly-even codes and extremal singly-even codes,” Des. Codes and Crypyogr., vol. 8, pp. 273-283, 1996.
[24] M. Harada, “New extremal self-dual codes of lengths 36 and 38,” IEEE Trans. Inform. Theory, vol. 45, pp. 2541-2543, 1999.
[25] M. Harada, T. A. Gulliver, and H. Kaneta, “Classification of extremal double circulant self-dual codes of length up to 62,” submitted for publication.
[26] M. Harada and H. Kimura, “New extremal doubly-even [64, 32, 12] codes,” Des. Codes and Cryptogr., vol. 6, pp. 91-96, 1995.
[27] M. Harada and H. Kimura, “On extremal self-dual codes,” Math. J. Okayama Univ., vol. 37, pp. 1-14, 1995.
[28] W. C. Huffman, “Automorphisms of codes with applications to extremal doubly-even codes of length 48,” IEEE Trans. Inform. Theory, vol. IT-28, pp. 511-521, 1982.
[29] W. C. Huffman and V. D. Tonchev, “The existence of extremal self-dual [50,25,10] codes with quasi-symmetric 2-(49,9,6) designs,” Des. Codes and Cryptogr., vol. 6, pp. 97-106, 1996.
[30] G. T. Kennedy and V. Pless, “A coding theoretic approach to extending designs,” Discr. Math., vol. 142, pp. 155-168, 1995.
[31] J.-L. Kim, “Construction of new self-dual codes and quantum codes and their connections,” Dissertation, University of Illinoisat Chicago, 2002.
[32] H. V. Koch, “On self-dual, doubly-even codes of length 32,” report P-Math-32/84, Institut fur Mathematik, Akademie der wissenschaften der DDR, Berlin, 1984.
[33] H. Koch, “Unimodular lattices and self-dual codes,” in Proc. Intern. Congress Math., Berkeley, CA, 1986, Amer. Math. Soc., Providence, RI, vol. 1, pp. 457-465, 1987.
[34] F. J. MacWilliams, “Orthogonal circulant matrices over finite fields, and how to find them,” J. combi. Theory, vol. 10, pp. 1-17, 1971.
[35] F. J. Macwilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes. Amsterdam, The Netherlands : North-Holland, 1977.
[36] V. Pless, “On the uniqueness of the Golay codes,” J. Combin. Theory, vol. 5, pp. 215-228, 1968.
[37] V. Pless, “A classification of self-orthogonal codes over GF(2),” Discr. Math., vol. 3, pp. 209-246, 1972.
[38] V. Pless, “The children of the (32,16) doubly-even codes,” IEEE Trans. Inform. Theory, vol. IT-24, pp. 738-746, 1982.
[39] V. Pless, Introduction to the Theory of Error-Correcting Codes, 3rd ed. New York : Wiley, 1998.
[40] V. Pless and N. J. A. Sloane, “On the classification and enumeration of self-dual codes,” J. Combi. Theory Ser. A, vol. 18, pp. 313-335, 1975.
[41] V. Pless, V. Tonchev, and J. Leon, “On the existence of a certain (64,32,12) extremal codes,” IEEE Trans. Inform. Theory, vol. 39, pp. 214-215, 1993.
[42] V. D. Tonchev, “Self-orthogonal designs and extremal doubly-even codes,” J. Combin. Theory Ser. A, vol. 52, pp. 197-205, 1989.
[43] V. D. Tonchev and V. Y. Yorgov, “The existence of certain extremal [54, 27, 10] self-dual codes,” IEEE Trans. Inform. Theory, vol. 42, pp. 1628-1631,1996.
[44] H.-P. Tsai, “Existence of certain extremal self-dual codes,” IEEE Trans. Inform. Theory, vol.38, pp. 501-504, 1992.
[45] H.-P. Tsai, “Existence of some extremal self-dual codes,” IEEE Trans. Inform. Theory, vol. 38, pp. 1829-1833, 1992.
[46] H.-P. Tsai and Y.-J. Jiang, “Some new extremal self-dual [58, 29, 10] codes,” IEEE Trans. Inform. Theory, vol. 44, pp. 812-814, 1998.
[47] V. Y. Yorgov, “A method for constructing inequivalent self-dual codes with application to length 56,” IEEE Trans. Inform. Theory, vol. IT-33, pp. 77-82, 1987.
[48] V. Y. Yorgov, “Doubly-even extremal codes of length 64,” (in Russian) Probl. Pered. Inform., vol. 22, pp. 35-42, 1986. English translation in Probl. Inform. Transm., vol. 22, pp. 277-284, 1986.
[49] V. Y. Yorgov, “On the extremal doubly-even codes of length 32,” in Proc. Fourth Joint Swedish-Soviet Int. Workshop on Inform. Theory, Gotland, Sweden, pp. 275-279, 1989.
[50] V. Yorgov and R. Ruseva, “Two extremal codes of length 42 and 44,” (in Russian) Probl. Pered. Inform., vol. 29, pp. 99-103, 1993. English translation in Probl. Inform. Transm., vol. 29, pp. 385-388, 1994.
[51] V. Y. Yorgov and N. P. Ziapkov, “Extremal codes of length 40 and automorphism of order 5,” preprint.