| 研究生: |
黃宗信 Huang, Tsung-Hsin |
|---|---|
| 論文名稱: |
溫度與表面效應對聚乳酸分子樹狀晶與板晶彎曲成長之影響 Temperature and surface effect on lamellar bending and dendritic growth within PLLA and PLLA/PDLA thin films |
| 指導教授: |
阮至正
Ruan, Jr-Jeng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 聚乳酸 、溫度效應 、表面效應 、板晶彎曲 |
| 外文關鍵詞: | lamellar bending, lamellar branching, diffusion-controlled crystallization |
| 相關次數: | 點閱:109 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
此研究探討晶相成長溫度和基材特性,如何影響於厚度15 nm以下薄膜內的高分子板晶成長。所研究的系統分別為聚左乳酸分子Poly-(L-Lactide)(PLLA)以及等比例混摻聚左乳酸(PLLA)與聚右乳酸Poly-(D-Lactide)(PDLA)之樣品。由於溫度效應影響,造成PLLA與PLA混摻系統於低溫時,晶相成長的形態以edge-on板晶為主。於較高晶相成長溫度,結晶成長逐漸趨向flat-on板晶發展。
由電子顯微鏡觀察PLLA的edge-on板晶成長發現,板晶均以順時針方向彎曲成長,彎曲的曲率與成長溫度成正比。溫度效應亦造成造成PLLA edge-on板晶成長,於開始彎曲的的方發生分支現象(lamellar branching)。於低溫時,板晶的分支成長較易發生。由板晶分支成長與彎曲趨勢的關係推論,板晶彎曲成長所造成的差排缺陷,是形成板晶分支現象的原因。隨著溫度上升,板晶有一致的彎曲趨勢與較大的彎曲曲率,因此不易發生差排缺陷而導致板晶的分支。對於PLLA的flat-on樹狀晶,亦可觀察到順時針方向的彎曲成長,伴隨著鏈段傾斜排列的發生。並發現在持溫過程,flat-on晶板內鏈段排列傾斜的程度會持續的改變。
植有六甲基二矽氮烷(HMDS)自組裝層的玻片,表面疏水性會大幅提升。於結晶溫度持溫的初期,在此改質的玻片上原本均勻分佈的薄膜會先發展成團狀區域的不連續分佈,減少和疏水表面接觸的面積。隨著持溫這些團狀區域會逐漸連結、聚集與融合,然後才觀察到明顯的結晶成長。疏水性的基材不僅造成整體結晶速率變慢,亦促使flat-on板晶可於混摻薄膜以及較低的結晶溫度下成長。此外,疏水性的基材具有抑制鏈段傾斜排列發生的效應,導致flat-on板晶失去彎曲成長的趨勢。因此這個研究,亦揭開了結晶溫度與表面效應對鏈段傾斜排列的影響。
This research is to explore the isothermal evolution of polylactide crystalline lamellae within film thinner than 15 nm at selected temperatures. After completely melting previous crystalline domains, the growth of edge-on lamellae was recognized as the basic habit of isothermal crystallization at lower temperatures. However, as selecting 120 oC for isothermal crystallization, the growth of flat-on lamellae becomes dominant.
Regarding the growth of Poly-(L-Lactide)(PLLA) edge-on lamellae, the tendency of clockwise bending upsurges with the increase of isothermal crystallization temperature. Nevertheless, lamellar branching becomes less frequent upon increasing growth temperature. According to this relationship between lamellar branching and bending growth, the occurrence of screw dislocation is proposed responsible for the initiation of lamellar branching. At higher crystallization temperatures, the created strong bending tendency is able to overcome the anchoring effect of substrate, reducing the occurrence of screw dislocation and lamellar branching. Oppositely, at lower crystallization temperatures, weaker bending tendency is countered by anchoring effect of substrate, which results in the split of edge-on lamellae and the occurrence of screw dislocation at certain distance from substrate. Subsequent lamellar growth thus leads to lamellar branching.
Furthermore, for the growth of flat-on lamellae, dendritic morphology was found to prevailingly develop, reflecting the feature of diffusion-controlled crystallization. This growth of dendritic morphology also illustrates slight clockwise bending, which is accompanied with chain tilting. However, the degree of chain tilting was found to gradually decrease during studied isothermal growth and thickening of flat-on lamellae. This appears as a new route of lamellar organization for enhancing the stability of crystalline lattice packing.
With the deposition of hexamethyldisilazane(HMDS) self-assembly layer on glass substrate, a more hydrophobic surface is created for the crystallization of PLLA. It was found that, the dewetting phenomenon took place first during isothermal course, which led to the appearance of granular domains. These granular domains act as the reservoir of crystallizable molecules, and the coalescence of these granular domains becomes critically important for crystal growth. Furthermore, more hydrophobic surfaces are able to reduce the degree of chain tilting, which leads to the suppression of lamellar bending. Therefore this research is able to further understand the relationship between chain tilting and lamellar bending.
1. Tsuji, H. Macromol. Biosci. 2005, 5, (7), 569-597.
2. Surin, M.; Leclére, P.; Lazzaroni, R.; Yuen, J. D.; Wang, G.; Moses, D.; Heeger, A. J.; Cho, S.; Lee, K. J. Appl. Phys. 2006, 100, (3), 033712.
3. Hoffman, J. D.; Guttman, C. M.; DiMarzio, E. A. Faraday Discuss. Chem. Soc. 1979, 68, 177-197.
4. Pierce, F. G., Aggregation in colloids and aerosols. ProQuest: 2007.
5. Mullins, W. W.; Sekerka, R. J. Appl. Phys. 1963, 34, (2), 323-329.
6. Witten, T. A.; Sander, L. M. Phys. Rev. B 1983, 27, (9), 5686-5697.
7. Witten, T. A.; Sander, L. M. Phys. Rev. Lett. 1981, 47, (19), 1400-1403.
8. Lovinger, A. J.; Cais, R. E. Macromolecules 1984, 17, (10), 1939-1945.
9. Reiter, G.; Sommer, J. U. Phys. Rev. Lett. 1998, 80, (17), 3771-3774.
10. Reiter, G.; Sommer, J. U. J. Chem. Phys. 2000, 112, (9), 4376-4383.
11. Sommer, J. U.; Reiter, G. J. Chem. Phys. 2000, 112, (9), 4384-4393.
12. Sakai, Y. Macromolecules 1996, 29, (27), 8830-8834.
13. Sakai, Y.; Imai, M.; Kaji, K.; Tsuji, M. J. Cryst. Growth 1999, 203, (1), 244-254.
14. Taguchi, K.; Miyaji, H.; Izumi, K.; Hoshino, A.; Miyamoto, Y.; Kokawa, R. Polymer 2001, 42, (17), 7443-7447.
15. Hollander, F. F. A.; Stasse, O.; Van Suchtelen, J.; Van Enckevort, W. J. P. J. Cryst. Growth 2001, 233, (4), 868-880.
16. Billia, B.; Trivedi, R., Handbook of Crystal Growth. Hurle, D. T. J., Ed. Elsevier Science: Amsterdam, 1993; Vol. 1b, p 899.
17. Glicksman, M.; Marsh, S., Handbook of Crystal Growth. Hurle, D. T. J., Ed. Elsevier Science: Amsterdam, 1993; p 1075.
18. Kessler, D. A.; Koplik, J.; Levine, H. Adv. Phys. 1988, 37, (3), 255-339.
19. Wunderlich, B., Macromolecular physics, Crystal nucleation, growth, annealing, Vol. 2. In Academic: New York, 1976; pp 299-301.
20. Beers, K. L.; Douglas, J. F.; Amis, E. J.; Karim, A. Langmuir 2003, 19, (9), 3935-3940.
21. Taguchi, K.; Toda, A.; Miyamoto, Y. J. Macromol. Sci. B 2006, 45 B, (6), 1141-1147.
22. Zhai, X.; Wang, W.; Zhang, G.; He, B. Macromolecules 2006, 39, (1), 324-329.
23. Mareau, V. H.; Prud'homme, R. E. Polymer 2005, 46, (18), 7255-7265.
24. Mareau, V. H.; Prud'homme, R. E. Macromolecules 2005, 38, (2), 398-408.
25. Reiter, G.; Strobl, G. R., Progress in understanding of polymer crystallization. Springer: New York, 2007; pp 179-200.
26. Okerberg, B. C.; Marand, H. J. Mater. Sci. 2007, 42, (12), 4521-4529.
27. Ferreiro, V.; Douglas, J. F.; Warren, J. A.; Karim, A. Phys. Rev. E 2002, 65, (4), 042802.
28. Okerberg, B. C.; Marand, H.; Douglas, J. F. Polymer 2008, 49, (2), 579-587.
29. Maillard, D.; Prud’homme, R. E. Can. J. Chem. 2008, 86, (6), 556-563.
30. Jiang, Y.; Yan, D.-D.; Gao, X.; Han, C. C.; Jin, X.-G.; Li, L.; Wang, Y.; Chan, C.-M. Macromolecules 2003, 36, (10), 3652-3655.
31. Godovsky, Y. K.; Magonov, S. N. Langmuir 2000, 16, (7), 3549-3552.
32. Wang, M. T.; Braun, H. G.; Meyer, E. Macromol. Rapid Commun. 2002, 23, (14), 853-858.
33. Qiao, C.; Zhao, J.; Jiang, S.; Jl, X.; Lijia, A. N.; Jiang, B. J. Polym. Sci., Part B: Polym. Phys. 2005, 43, (11), 1303-1309.
34. Sawamura, S.; Miyaji, H.; Izumi, K.; Sutton, S. J.; Miyamoto, Y. J. Phys. Soc. Jpn. 1998, 67, (10), 3338-3341.
35. Taguchi, K.; Miyaji, H.; Izumi, K.; Hoshino, A.; Miyamoto, Y.; Kokawa, R. J. Macromol. Sci. B 2002, 41, (4-6), 1033-1042.
36. Taguchi, K.; Toda, A.; Miyamoto, Y. J. Macromol. Sci. B 2006, 45, (6), 1141-1147.
37. Rastogi, S.; Spoelstra, A. B.; Goossens, J. G. P.; Lemstra, P. J. Macromolecules 1997, 30, (25), 7880-7889.
38. Matsuda, H.; Aoike, T.; Uehara, H.; Yamanobe, T.; Komoto, T. Polymer 2001, 42, (11), 5013-5021.
39. Gong, J.; Ahn, H.; Kim, E.; Lee, H.; Park, S.; Lee, M.; Lee, S.; Kim, T.; Kwak, E.-A.; Ryu, D. Y. Soft Matter 2012, 8, (13), 3570-3575.
40. Fujita, M.; Doi, Y. Biomacromolecules 2003, 4, (5), 1301-1307.
41. Winkel, A. K.; Hobbs, J. K.; Miles, M. J. Polymer 2000, 41, (25), 8791-8800.
42. Maillard, D.; Prud’homme, R. E. Macromolecules 2010, 43, (9), 4006-4010.
43. Franke, M.; Rehse, N. Macromolecules 2007, 41, (1), 163-166.
44. Wang, F.-D.; Ruan, J.; Huang, Y.-F.; Su, A.-C. Macromolecules 2011, 44, (11), 4335-4341.
45. López, C. M.; Choi, K.-S. Langmuir 2006, 22, (25), 10625-10629.