簡易檢索 / 詳目顯示

研究生: 陳思帆
Chen, Sz-Fan
論文名稱: 消費者使用多功能電子票證之意願
Consumers’ Use Intention on Multi-Function Electronic Payment
指導教授: 鄭永祥
Cheng, Yung-hsiang
學位類別: 碩士
Master
系所名稱: 管理學院 - 交通管理科學系
Department of Transportation and Communication Management Science
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 98
中文關鍵詞: 多功能電子票證電子錢包結構方程模式中介變數混合羅吉特
外文關鍵詞: multi-functional electronic payment, electronic wallet, structural equation modeling, mediate variable, mixed logit
相關次數: 點閱:132下載:26
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技的進步,電子付費趨勢高漲,smart card的功能也越來越多元化。本研究設計一個新產品為多功能電子票證,特色為結合電子票證與電子錢包的功能。主要目的是瞭解消費者對於該新產品的使用意願。本研究以兩階段問卷發放,採用結構方程模式與羅吉特之方法來驗證。
    研究結果發現,消費者使用意願顯著受產品屬性、促銷方案,以及知覺風險構面影響,其中又以產品屬性的影響較大;另外,研究證實產品屬性在模式中扮演中介變數之角色。然而,比較兩個不同地區的消費者,研究結果指出高雄地區知覺風險對於產品屬性的負面影響明顯大於台北地區;而台北地區的消費者創新特質對產品屬性的影響比高雄地區還顯著。此外,透過混合羅吉特模式得到卡片成本、乘車費率、消費折扣和個人資訊保護四個屬性變數具有顯著影響力。敏感度分析而得知,乘車費率的調整和資訊保護對於各方案之佔有率影響程度最大;當乘車費用以七五折扣時,市佔率變動幅度最大;而當資訊完全受到保護時,記名捷運卡的市佔率可以提升至61.48%。
    本研究建議卡片公司可以增強卡片的相對優勢與相容性,並且降低其複雜度,來提升產品競爭力,例如降低卡片成本或持卡之乘車費率、增加合作廠商。此外,若在資訊保護部分能給予保證,可以透過媒體報導或專家的宣導來提升消費者對於多功能電子票證的信心。

    The capability of smart card is getting diversified as technology progress and usage of electronic payment raises. This study designed a new product, multi-functional electronic payment, which combined the function of electronic payment and electronic wallet. In order to interpret the use intention of this new product, an adoption model of multi-functional electronic payment was designed. The data resources of this model were collected using questionnaire and proofed with structural equation modeling and logit. The use intention was affected by three aspects, i.e, product attributes, promotion, and, perceived risk. Beside, product attributes played a role of mediate variable in this model. Between two cities, Kaohsiung had higher perceived risk than Taipei. And Taipei had stronger consumer innovativeness than Kaohsiung. Forthermore, card cost, fare, discount and safety had significant influence throught the mixed logit model. Sensitivity analysis indicated that fare adjustment and information protection had greatest influence.
    This result indicated the relative advantages and compatibility of the smart card should be improved and further reduced the complexity to promote the competitive strength of the product, i.e, by lowering the card cost and fare and looking for the cooperation.In addition, the company should improve the consumer’s confidence on the protection of private information through the guarantee by media and experts.

    目錄 圖目錄………………………………………………………………………………VI 表目錄………………………………………………………………………………VII 第一章 緒論…………………………………………………………………………1 1.1 研究動機與背景………………………………………………………………1 1.2 研究目的………………………………………………………………………3 1.3 研究範圍與限制………………………………………………………………4 1.4 研究流程………………………………………………………………………4 第二章 文獻回顧………………………………………………………………………7 2.1 國內電子票證之發展概況……………………………………………………7 2.1.1 台北都會區電子票證……………………………………………………7 2.1.2 桃竹苗地區電子票證……………………………………………………8 2.1.3 中部地區電子票證………………………………………………………8 2.1.4 南臺灣地區電子票證……………………………………………………9 2.1.5 國內票證系統未來動向…………………………………………………10 2.2 新產品採用模式………………………………………………………………10 2.3 新產品屬性……………………………………………………………………11 2.3.1 相對優勢………………………………………………………………12 2.3.2 相容性…………………………………………………………………13 2.3.3 複雜性…………………………………………………………………14 2.4 知覺風險………………………………………………………………………14 2.4.1 知覺風險的概念 …………………………………………………………14 2.4.2 知覺風險構面……………………………………………………………16 2.5 生活型態理論………………………………………………………………17 2.6 消費者創新特質……………………………………………………………18 2.7 相關文獻………………………………………………………………………18 第三章 研究方法……………………………………………………………………21 3.1 研究架構與假設………………………………………………………………21 3.2 多功能電子票證設計…………………………………………………………23 3.3 研究方法………………………………………………………………………24 第四章 問卷設計……………………………………………………………………31 4.1 第一階段問卷…………………………………………………………………31 4.1.1 基本資料 …………………………………………………………………31 4.1.2 模式結構的衡量 …………………………………………………………31 4.1.3 生活型態的衡量…………………………………………………………35 4.1.4 使用意願的衡量…………………………………………………………36 4.2 第二階段問卷…………………………………………………………………36 4.2.1 直交設計 ………………………………………………………………37 4.2.2 情境模擬 ………………………………………………………………37 4.2.3 基本資料 ………………………………………………………………38 第五章 實證分析……………………………………………………………………39 5.1 敘述性統計……………………………………………………………………39 5.1.1 第一階段問卷 ……………………………………………………………39 5.1.2 第二階段問卷……………………………………………………………42 5.2 結構關係模式驗證性因素分析………………………………………………45 5.3 結構方程式之分析…………………………………………………………49 5.3.1 整體模式分析 ……………………………………………………………49 5.3.2 台北地區與高雄地區模式分析…………………………………………54 5.4 生活型態………………………………………………………………………56 5.4.1 生活型態因素分析 ………………………………………………………56 5.4.2 因素命名…………………………………………………………………57 5.4.3 集群分析…………………………………………………………………58 5.4.4 組別命名………………………………………………………………59 5.4.5 各族群之消費者偏好與習慣…………………………………………60 5.5 羅吉特分析……………………………………………………………………63 5.5.1 多元羅吉特……………………………………………………………63 5.5.2 混合羅吉特……………………………………………………………66 5.5.3 概似比檢定 ……………………………………………………………68 5.5.4 中介變數檢定 …………………………………………………………68 5.5.5 總體彈性分析 …………………………………………………………70 5.6 敏感度分析……………………………………………………………………71 5.7小結……………………………………………………………………………75 第六章 結論與建議…………………………………………………………………76 6.1 結論……………………………………………………………………………76 6.1.1 研究發現 …………………………………………………………………76 6.1.2 研究貢獻…………………………………………………………………79 6.2 建議……………………………………………………………………………79 6.2.1 對實務上的建議..…………………………………………………………79 6.2.2 對學術上的建議…………………………………………………………81 中文參考文獻………………………………………………………………………82 英文參考文獻………………………………………………………………………83 附錄…………………………………………………………………………………87 表目錄 表4-1各構面之問項整理…………………………………………………………34 表4-2第二階段問卷變數設計……………………………………………………36 表4-3屬性變數之水準值與說明值………………………………………………37 表4-4付費方式之說明……………………………………………………………38 表4-5情境組合之範例……………………………………………………………38 表5-1基本資料統計………………………………………………………………40 表5-2受訪者消費特性……………………………………………………………41 表5-3特性與性別的交叉統計……………………………………………………42 表5-4基本資料統計………………………………………………………………43 表5-5受訪者使用捷運卡狀況…………………………………………………43 表5-6受訪者消費特性…………………………………………………………44 表5-7驗證性因素分析模式配適值………………………………………………45 表5-8 驗證性因素分析模式參數估計表……………………………………48 表5-9結構方程式係數估計表……………………………………………………51 表5-10 Sobel檢定………………………………………………………………53 表5-11因素分析結果……………………………………………………………57 表5-12集群分析…………………………………………………………………58 表5-13各族群生活型態因素之變異數分析……………………………………59 表5-14各族群消費者的男女比例………………………………………………60 表5-15消費者對產品使用意願之迴歸分析表…………………………………61 表5-16不同生活型態之消費者的消費習慣……………………………………62 表5-17不同性別之消費者的消費習慣…………………………………………62 表5-18多元羅吉特之模式校估結果……………………………………………65 表5-19混合羅吉特之模式校估結果……………………………………………67 表5-20多元與混合羅吉特模型之概似比檢定…………………………………………68 表5-21混合羅吉特之交互作用模式校估結果…………………………………69 表5-22總彈性係數值……………………………………………………………70 表5-23混合羅吉特模式效用分析表……………………………………………71 表5-24記名捷運卡卡片成本之敏感度分析……………………………………72 表5-25記名捷運卡乘車費率之敏感度分析…………………………………72 表5-26記名捷運卡資訊保護之敏感度分析……………………………………73 表5-27不記名捷運卡卡片成本之敏感度分析…………………………………74 表5-28不記名捷運卡乘車費率之敏感度分析…………………………………74

    中文參考文獻
    1. 台北市悠遊卡服務品質、滿意度與忠誠度之研究,都市交通半年刊,第二十
    三卷,第一期,民國97年,48-56頁。
    2. 洪浩凱,台北悠遊卡使用者對於台北大眾捷運公司顧客忠誠度之研究,南華
    大學旅遊事業管理研究所,2001。
    3. 陳建宏,消費者對接觸式電子票證使用意願之研究-以台北悠遊卡為例,成功大學交通管理科學研究所,2004。
    4. 陳順宇,多變量分析,民國94年。華泰書局。
    5. 悠遊卡股份有限公司網站http://www.easycard.com.tw/,民國98年10月點閱
    6. 高雄捷運公司http://www.krtco.com.tw/index.aspx,民國98年10月點閱
    7. 台北捷運公司http://www.trtc.com.tw/c/,民國98年10月點閱
    8. 八達通官方網站 http://www.octopuscards.com/,民國98年9月點閱

    英文參考文獻
    1. Agarwal, S. and Teas, R. K., 2001. Perceived Value: Mediating Role of Perceived Risk. Journal of Marketing Theory and Practice, Vol. 9, No. 4, pp. 1-14.
    2. Aubert, B. A., Hamel, G., 2001. Adoption of smart cards in the medical sector: the Canadian experience. Social Science and Medicine, Vol. 53, No. 7, pp. 879–894.
    3. Blake, B. F., Neuendorf, K. A. and Valdiserri, C. M., 2003. Innovativeness and variety of internet shopping. Internet Research, Vol. 13, No. 3, pp. 156-69.
    4. Boyd, T. C., Mason, C. H., 1999. The link between attractiveness of Extrabrand attributes and the adoption of innovations. Journal of the Academy of Marketing Science, Vol. 27, No. 3, pp. 306-319.
    5. Chen, C. Y., 2007. Passenger use intentions for electronic tickets on international flights. Journal of Air Transport Management, Vol. 13, No. 2, pp. 110-115.
    6. Childers, T. L., 1986. Assessment of the psychometric properties of an opinion leadership scale. Journal of Marketing Research, Vol. 23, No. 2, pp. 184-188.
    7. Citrin, A. V., Sprott, D. E., Silverman, S. N. and Stem, D. E., 2000. Adoption of internet shopping:the role of consumer innovativeness. Industrial Management & Data Systems, Vol. 100, No. 7, pp. 294-300. 8. Cox, 1967. Risk taking and information handling in consumer behavior, Graduate
    School of Business Administration, Harward University, Boston .
    9. Dhebar, Anirudha, 1995. Complementarity, Compatibility, and Product Change:
    Breaking With the Past? Journal Product Innovation Management, Vol. 12, No. 2, pp. 136-152.
    10. Dhebar, A., 1996. Speeding High-Tech Producer, Meet the Balking Consumer.
    Sloan Management Review, Vol. 37, No. 2, pp. 37-49.
    11. Dowling, Grahame R., Stealin, R., 1994. A Model of Perceived Risk and Intended Risk-handling Activity. Journal of Consumer Research, Vol. 21, No. 1, pp. 29-37.
    12. Featherman, Mauricio, S., Paul A. Pavlou, 2003. Predicting e-services Adoption: A Perceived Risk Facets Perspective. International Journal of Human-Computer
    Studies, Vol. 59, No. 4, pp. 451-474.
    13. Fornell, C., Larcker, D. F., 1981. Structural Equation Models with Unobservable Variables and Measurement Error: Algebra and Statistics. Journal of Marketing Research, Vol. 18, No. 3, pp. 382-388.
    14. Goldsmith, R. E., 2001. Using the domain specific innovativeness scale to identify innovative internet consumers. Internet Research, Vol. 11, No. 2, pp. 149-58.
    15. Greenleaf, Eric A. and Donald R. Lehmann, 1995. Reasons for Substantial Delay in Consumer Decision Making. Journal of Consumer Research, Vol. 22, No. 2, pp. 186-199.
    16. Grewal, Dhruv, Gotlieb, J., Marmorstein, H., 1994. The Moderating Effects of
    84
    Message Framing and Source Credibility on the Price-perceived Risk Relationship. Journal of Consumer Research, Vol. 21, No. 1, pp. 145-153.
    17. Guiltinan, Joseph P., 1999. Launch Strategy, Launch Tactics, and Demand
    Outcomes. Journal of Product Innovation Management, Vol. 16, No. 6, pp. 509-529.
    18. Harbison, J. R. and P. Pekar, 1997. Cross-broder alliance in the age of Collaboration. BoozAllen & Hamilton.
    19. Holak, Susan L., 1988. Determinants of Innovative Durables Adoption an Empirical Study With Implications for Early Product Screening. Journal of Product Innovation Management, Vol. 5, No. 1, pp. 50-69.
    20. Holak, S. L., Lehmann, D. R., 1990. Purchase intentions and the dimensions of
    innovation: an exploratory model. Journal of Product Innovation Management,
    Vol. 7, No. 1, pp. 59-73.
    21. Jacoby, J. and Leon B. Kaplan, 1974. The Components of Perceived Risk.
    Proceedings of the Third Annual Conference, Ann Arbour, MI, Association for Consumer Research, Vol. 59, No. 3, pp. 382-393.
    22. Kotler, Philip, 1994. Marketing Management: Analysis, Planning, Implementation and Control. 8th ed. Englewood Cliffs, NJ: Prentice Hall.
    23. Lassar, W. M., Manolis, C. and Lassar, S. S., 2005. The relationship between consumer innovativeness, personal characteristics, and online banking adoption. International Journal of Bank Marketing, Vol. 23, No. 2, pp. 176-99.
    24. Lazer, W., 1963. Life Style Concepts and Marketing. Toward Scientific Marketing, Stephen Greyser, ed., pp. 140-151.
    25. Lee, Sheang, K., Tan, S. J., 2003. E-retailing versus Physical Retailing: A Theoretical Model and Empirical Test of Consumer Choice. Journal of Business Research, Vol. 56, No. 11, pp. 877-885.
    26. Leea, G. H. M., Chengb, Y. W., Depickerea, A., 2003. Comparing smart card adoption in Singapore and Australian universities. Int. J. Human-Computer Studies, Vol. 58, No. 3, pp. 307–325.
    27. McFcdden, D. and Train, K., 2000. Mixed MNL Model for Discrete Response.
    Journal of Applied Econometrics, Vol. 15, No. 5, pp. 447-470.
    28. Mitchell, V. W., 1992. Understanding Consumers’ Behavior: Can Perceived Risk Theory Help? Management Decision, Vol. 30, No. 3, pp. 26-31.
    29. Mitchell, V. W., Greatorex, M., 1993. Risk Perception and Reduction in the Purchase of Consumer Service. The Service Industrial Journal, Vol. 13, No. 4, pp. 179-200.
    30. Miyazaki, Anthony D., Fernandez, A., 2001. Consumer Perceptions of Privacy and Security Risks for Online Shopping. Journal of Consumer Affairs, Vol. 35, No. 1,
    85
    pp. 27-44.
    31. Moore, C. Gary, Benbasat, I., 1991. Development of an Instrument to Measure the Perceptions of Adopting an Information Technology Innovation. Information Systems Research, Vol. 2, No. 3, pp. 192-222.
    32. Morency, C., Trépanier M., Agard. B., 2007. Measuring Transit Use Variability with Smart-Card Data. Transport Policy, Vol. 14, No. 3, pp. 193–203.
    33. Peter, J. Paul, Tarpey L. X., 1975. Comparative Analysis of Three Consumers Decision Strategies. Journal of Consumer Research, Vol. 2, No. 1, pp. 29-37.
    34. Pence, Homer E., James F. Engel, Roger D. Blackwell, 1970. Perceived Risk
    in Mail-Order and Retail Store Buying. Journal of Marketing Research, Vol. 7, No. 3, pp. 364-369.
    35. Plouffe, C. R., Vandenbosch, M., Hulland, J., 2001. Intermediating technologies and multi-group adoption: A comparison of consumer and merchant adoption intentions toward a new electronic payment system. Journal of Product Innovation Management, Vol. 18, No. 2, pp. 65–81.
    36. Plouffe, C., Hulland, J., & Vandenbosch, M. 2001. Research report: Richness versus parsimony in modeling technology adoption decisions: understanding merchant adoption of a smart card-based payment system. Information Systems Research, Vol. 12, No. 2, pp. 208-222.
    37. Plummer, J. T., 1974.The Concept and Application of Life Style Segmentation. The Journal of Marketing, Vol. 38, No. 1, pp. 33-37.
    38. Rogers, E. M., 1995. Diffusion of Innovation, 4th ed., New York: Free Press.
    39. Sarin, S., Sego, T., Chanvarsuth, N., 2003. Strategic Use of Bundling for Reducing Consumers’ Perceived Risk Associated with the Purchase of New High-Tech Products. Journal of Marketing Theory and Practice, Vol. 11, No. 3, pp. 71-82.
    40. Stignon, H., Roberston, T. S., 1985. A Propositional Inventory of New Diffusion Research. Journal Consumer Research, Vol. 11, March, pp. 849-867.
    41. Stone, R. N. and Gronhaug, K., 1993. Perceived Risk: Further Considerations for the Marketing Discipline. European Journal of Marketing, Vol. 127, No. 3, pp. 39-50.
    42. Srinivasan, N. and B. T. Ratchford, 1991. An empirical test of a model of external search for automobiles. Journal of Consumer Research, Vol. 18. No. 2, pp. 233-242.
    43. Tan, Soo Jiuan, 1999. Strategies for reducing consumers’ risk aversion in Internet shopping. Journal of Consumer Marketing, Vol. 16, No. 2, pp. 163-180.
    44. Taylor, James W., 1974. The Role of Risk in Consumer Behavior. Journal of Marketing, Vol. 38, No. 2, pp. 54-60.
    45. Taylor, S. & Todd, P. A., 1995, Decomposition and crossover effects in the theory
    86
    of planned behavior: A study of consumer adoption intentions. International Journal of Research in Marketing, Vol. 12, No. 2, pp. 137-155.
    46. Tornatzky, L. G. & Klein, K. J., 1982. Innvation characteristics and innovation adopt-implementation: a meta-analysis of findings. IEEE Transactions on Engineering Management, Vol. 29, No. 1, pp. 28-45.
    47. Truman, G. E., Sandoe, K., Rifkin R., 2003. An empirical study of smart card technology. Information & Management, Vol. 40, No. 6, pp. 591–606.
    48. Turban, E. and J. Brahm, 2000. Smart card-based electronic card payment systems in the transportation industry. Journal of Organizational Computing and Electronic Commerce, Vol. 10, No. 4, pp. 281-293.
    49. Veryzer, R. W., 1998. Discontinuous Innovation and the New Product Development Process. Journal Product Innovation Management, Vol. 15, No. 4, pp. 304-321.

    下載圖示 校內:2011-08-20公開
    校外:2011-08-20公開
    QR CODE