| 研究生: |
張鈞傑 Chang, Chun-Chieh |
|---|---|
| 論文名稱: |
台灣三種穴居型蝙蝠體溫調控模式、代謝率與水分散失速率之比較 Thermoregulation, metabolic rate and evaporative water loss in three Taiwanese cave-dwelling bats |
| 指導教授: |
侯平君
Hou, Ping-Chun Lucy |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 休眠 、水分蒸散率 、代謝率 、體溫調節 、體型大小 、台灣葉鼻蝠 、摺翅蝠 、台灣小蹄鼻蝠 |
| 外文關鍵詞: | Hipposideros terasensis, Miniopterus schreibersii, Rhinolophus monoceros, thermoregulation, metabolic rate, evaporative water loss, torpor, body size. |
| 相關次數: | 點閱:170 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
溫度對於生物是一種強烈的選汰壓力,也是決定生物分布與豐富度的重要因子之一。過去研究顯示,熱帶地區蝙蝠的體溫調節模式,主要受到體型大小的影響。本研究目的在於比較台灣低海拔三種常見的的穴居蝙蝠,台灣小蹄鼻蝠(Rhinolophus monoceros)、摺翅蝠(Miniopterus schreibersii)與台灣葉鼻蝠(Hipposideros terasensis),其體溫調控、代謝率與水分蒸散率的差異,並釐清體型大小是否為影響其體溫調節模式的主要因子。研究結果發現:台灣的三種蝙蝠其體溫調控並不完全受體型影響,可能也與其起源地有關。體型大的台灣葉鼻蝠於低溫下(15-25 oC)不進行休眠,但仍會略為降低體溫以節省能量支出,與其他熱帶大型蝙蝠相似;摺翅蝠其體溫及代謝率皆隨環境溫度(10-30 oC)下降而降低,以進行休眠,與熱帶中型蝙蝠不同,卻與典型的溫帶蝙蝠相似;台灣小蹄鼻蝠體溫也是隨環境溫度下降而降低,但其代謝率於環境溫度低於20°C時,反而提高,但因體型小,散熱大於產熱,體溫仍不斷下降,顯示台灣小蹄鼻蝠為不適應低溫的熱帶種類。台灣葉鼻蝠的水分蒸散速率與代謝率無關,顯示其水分主要透過體表散失;摺翅蝠在休眠時的水分蒸散速率與代謝率呈正相關,顯示水分主要從呼吸道散失;而台灣小蹄鼻蝠的水分蒸散速率受代謝率與其他因子的共同影響。本研究也發現摺翅蝠在夏季與冬季的體溫調控模式很相似,與同種在溫帶及熱帶地區族群的代謝速率亦相似,顯示不同族群間體溫調節的模式應該差異不大。本研究僅探討單獨個體的體溫調控,至於群聚行為如何影響體溫調控,有待進一步研究。
Temperature is a strong selection force and determines the distribution and abundance of a species. In this study, I examined patterns of thermoregulation, metabolic rate, and evaporative water loss (EWL) in three Taiwanese cave-dwelling bats, the Formosan leaf-nosed bat, Hipposideros terasensis, the Japanese long-winged bat, Miniopterus schreibersii, and the Formosan lesser horseshoe bat, Rhinolophus monoceros, and test whether body size is the major factor for the patterns. The results showed that H. terasensis, the largest among the three, did not enter into torpor when temperature decreased (15-25 oC), but maintained a slightly lower body temperature to reduce energy expenditure. M. schreibersii depressed its body temperature and metabolic rate as temperature dropped from 35 to 10 oC. The pattern is different from those of medium-sized tropical species but similar to those of temperate bats. R. monoceros, smallest among the three, also dropped their body temperature and metabolic rate when ambient temperature went down to 20 oC. Below 20 oC, metabolic rate of R. monoceros increased, suggesting R. monoceros could not tolerate low temperature and might have a tropical origin. Nevertheless, body temperature of R. monoceros didn’t increased as the metabolic rate elevated, likely due to it’s small body size. The rate of evaporative water loss did not related to metabolic rate or temperature in H. terasensis, suggesting the pathway for water loss was cutaneous rather than respiratory. The rate of EWL in M. schreibersii is positively correlated with the metablic rate, suggesting water was lost mainly through respiratory tracts. Factors other than respiration might also influence the EWL of R. monoceros. Our results suggest that body size may not be the sole factor affecting thermoregulation in the Taiwanese bats. Other factors, such as phylogeny, may also influence thermoregulation. While this study focuses on thermoregulation of individual bats, the effect of clustering on thermoregulation might be included in future studies.
Appleton, B., J. McKenzie, and L. Christidis. 2004. Molecular systematics and biogeography of the bent-wing bat complex Miniopterus schreibersii (Kuhl, 1817)(Chiroptera: Vespertilionidae). Molecular Phylogenetics and Evolution 31:431-439.
Barclay, R., C. Lausen, and L. Hollis. 2001. What's hot and what's not: defining torpor in free-ranging birds and mammals. Canadian Journal of Zoology 79:1885-1890.
Bartholomew, G., P. Leitner, and J. Nelson. 1964. Body temperature, oxygen consumption, and heart rate in three species of Australian flying foxes. Physiological Zoology 37:179–198.
Baudinette, R., S. Churchill, K. Christian, J. Nelson, and P. Hudson. 2000. Energy, water balance and the roost microenvironment in three Australian cave-dwelling bats (Microchiroptera). Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology 170:439-446.
Bonaccorso, F. and B. McNab. 2003. Standard energetics of leaf-nosed bats (Hipposideridae): its relationship to intermittent-and protracted-foraging tactics in bats and birds. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology 173:43-53.
Bozinovic, F. and M. Rosenmann. 1989. Maximum metabolic rate of rodents: physiological and ecological consequences on distributional limits. Functional Ecology:173-181.
Brown, C. 1999. Metabolism and thermoregulation of individual and clustered long-fingered bats, Miniopterus schreibersii, and the implications for roosting. South African Journal of Zoology 34:166-172.
Brown, C. and R. Bernard. 1994. Thermal preference of Schreiber's long-fingered (Miniopterus schreiberisii) and cape horseshoe (Rhinolophus capensis) bats. Comparative Biochemistry and Physiology. Comparative Physiology 107:439.
Brown, J., J. Gillooly, A. Allen, V. Savage, and G. West. 2004. Toward a metabolic theory of ecology. Ecology 85:1771-1789.
Chen, S., S. Rossiter, C. Faulkes, and G. Jones. 2006. Population genetic structure and demographic history of the endemic Formosan lesser horseshoe bat (Rhinolophus monoceros). Molecular Ecology 15:1643-1656.
Clarke, A. and P. Rothery. 2008. Scaling of body temperature in mammals and birds. Functional Ecology 22:58-67.
Cruz-Neto, A., T. Garland, and A. Abe. 2001. Diet, phylogeny, and basal metabolic rate in phyllostomid bats. Zoology 104:49-58.
Cryan, P. and B. Wolf. 2003. Sex differences in the thermoregulation and evaporative water loss of a heterothermic bat, Lasiurus cinereus, during its spring migration. Journal of Experimental Biology 206:3381-3390.
Csorba, G., P. Ujhelyi, and N. Thomas. 2003. Horseshoe bats of the world (Chiroptera: Rhinolophidae). Alana Books. Shropshire.
Daan, S., B. Barnes, and A. Strijkstra. 1991. Warming up for sleep? Ground squirrels sleep during arousals from hibernation. Neuroscience Letters 128:265.
Davydov, A. 2004. Energetics and thermoregulation in Chiroptera. Journal of Evolutionary Biochemistry and Physiology 40:241-249.
Dehua, W. and W. Zuwang. 2000. Body temperature regulation and evaporative water loss in root vole (Microtus oeconomus). Acta Theriologica Sinica 20:37-47.
Elgar, M. and P. Harvey. 1987. Basal metabolic rates in mammals: allometry, phylogeny and ecology. Functional Ecology:25-36.
Geiser, F. and T. Ruf. 1995. Hibernation versus daily torpor in mammals and birds: physiological variables and classification of torpor patterns. Physiological Zoology 68:935-966.
Geiser, F., J. Holloway, G. K rtner, T. Maddocks, C. Turbill, and R. Brigham. 2000. Do patterns of torpor differ between free-ranging and captive mammals and birds. Life in the Cold. Springer, Berlin:95–102.
Geiser, F. and C. Ferguson. 2001. Intraspecific differences in behaviour and physiology: effects of captive breeding on patterns of torpor in feathertail gliders. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology 171:569-576.
Hampton, I., G. Whittow, J. Szekerczes, and S. Rutherford. 1971. Heat transfer and body temperature in the atlantic bottlenose dolphin, Tursiops truncatus. International Journal of Biometeorology 15:247-253.
Henshaw, R. 1970. Thermoregulation in bats. About bats. Southern Methodist University Press, Dallas:188-232.
Hill, J. and J. Smith. 1984. Bats: A natural history. University of Texas press. Austin.
Hill, R. and G. Wyse. 1989. Thermal relations. Animal physiology. Happer & Row, Publishers, New York:76-135.
Kelm, D. and O. von Helversen. 2007. How to budget metabolic energy: torpor in a small neotropical mammal. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology 177:667-677.
Kunz, T. 1988. Ecological and behavioral methods for the study of bats. Smithsonian Institution Press. Washington DC.
Kunz, T. and M. Fenton. 2003. Bat ecology. University of Chicago Press. Chicago and London.
Kurta, A., G. Bell, K. Nagy, and T. Kunz. 1989. Energetics of pregnancy and lactation in free-ranging little brown bats (Myotis lucifugus). Physiological Zoology 62:804-818.
Kurta, A., K. Johnson, and T. Kunz. 1987. Oxygen consumption and body temperature of female little brown bats (Myotis lucifugus) under simulated roost conditions. Physiological Zoology 60:386-397.
Kurta, A. and T. Kunz. 1988. Roosting metabolic rate and body temperature of male little brown bats (Myotis lucifugus) in summer. Journal of Mammalogy:645-651.
McNab, B. 1969. The economics of temperature regulation in neotropical bats. Comparative Biochemistry and Physiology 31:227-268.
McNab, B. 1980. On estimating thermal conductance in endotherms. Physiological Zoology 53:145-156.
McNab, B. 1989. Temperature regulation and rate of metabolism in three Bornean bats. Journal of Mammalogy 70:153-161.
McNab, B. 2002. The physiological ecology of vertebrates: a view from energetics. Cornell University Press. New York.
Munro, D., D. Thomas, and M. Humphries. 2005. Torpor patterns of hibernating eastern chipmunks Tamias striatus vary in response to the size and fatty acid composition of food hoards. Ecology 74:692-700.
Scholander, P., V. Walters, R. Hock, and L. Irving. 1950. Body insulation of some arctic and tropical mammals and birds. The Biological Bulletin 99:225.
Speakman, J. and D. Thomas. 2003. Physiological ecology and energetics of bats. Bat Ecology. University of Chicago Press, Chicago:430–490.
Strijkstra, A., R. Hut, M. de Wilde, J. Stieler, and E. Van der Zee. 2003. Hippocampal synaptophysin immunoreactivity is reduced during natural hypothermia in ground squirrels. Neuroscience Letters 344:29-32.
Studier, E. 1981. Energetic advantages of slight drops in body temperature in little brown bats, Myotis lucifugus. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology 70: 537-540.
Webb, P., J. Speakman, and P. Racey. 1996. How hot is a hibernaculum? A review of the temperatures at which bats hibernate. Canadian Journal of Zoology 74:761-765.
Willis, C. and R. Brigham. 2007. Social thermoregulation exerts more influence than microclimate on forest roost preferences by a cavity-dwelling bat. Behavioral Ecology and Sociobiology 62:97-108.
Willmer, P., G. Stone, and I. Johnston. 2000. Environmental physiology of animals. Blackwell Publishing.Shropshire.
Wilson, D. and D. Reeder. 2005. Mammal species of the world: a taxonomic and geographic reference. Johns Hopkins University Press, Baltimore.
Withers, P. 1977. Measurement of VO2, VCO2, and evaporative water loss with a flow-through mask. Journal of Applied Physiology 42:120-123.
Withers, P. 1992.Temperature. Comparative animal physiology. Saunders College Publishing. Florida:122-191.
Wojciechowski, M., M. Jefimow, and E. Tegowska. 2007. Environmental conditions, rather than season, determine torpor use and temperature selection in large mouse-eared bats (Myotis myotis). Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology 147:828-840.
Yoshiyuki, M. 1991. Taxonomic Status of Hipposideros terasensis Kishida, 1924 from Taiwan (Chiroptera, Hipposideridae). Journal of the Mammalogical Society of Japan 16:27-35.
何英毅,2000。臺灣葉鼻蝠的棲所選擇,國立臺灣大學動物學研究所碩士論文,75頁。
林良恭、李玲玲、鄭鍚奇. 1997。台灣的蝙蝠,國立自然科學博物館,台中,台灣,165頁。
許立杰、馮江、劉穎、孫克萍、施利民、江廷磊,2008。小菊頭蝠和單角菊頭蝠分類地位的探討,東北師大學報:自然科學版40:95-99。
陳湘繁,1995。陽明山地區共域性臺灣葉鼻蝠(Hipposideros armiger)及台灣小蹄鼻蝠(Rhinolophus monoceros)之活動模式與食性,國立臺灣大學動物學研究所碩士論文,80頁。
黃子典,1999。陽明山地區台灣小蹄鼻蝠(Rhinolophus monoceros)的族群動態,國立臺灣大學動物學研究所碩士論文,59頁。
黃雲清,2000。南投縣地利地區摺翅蝠體溫調節之研究,私立東海大學生物學研究所碩士論文,68頁。
鄭錫奇,2004。台灣葉鼻蝠(Hipposideros terasensis)族群生態學,國立臺灣大學生態學與演化生物學研究所,76頁。