| 研究生: |
游証傑 You, Zheng-Jie |
|---|---|
| 論文名稱: |
2-氯丙醯氯在銅(100)表面上的熱化學研究 Thermal Chemistry of 2-Chloropropionyl Chloride on Cu(100) Surface |
| 指導教授: |
林榮良
Lin, Jong-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 超高真空系統 、程式控溫反應/脫附 、反射-吸收紅外光譜儀 、X-光光電子能譜 、銅(100) 、2-氯丙醯氯 |
| 外文關鍵詞: | ultra-high vacuum system, temperature-programmed reaction/desorption, reflection-absorption infrared spectroscopy, X-ray photoelectron spectroscopy, Cu(100), 2-chloropropionyl chloride |
| 相關次數: | 點閱:101 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文研究在超高真空系統中,2-氯丙醯氯(2-Chloropropionyl chloride, CH3CHClCOCl)在Cu(100)表面的熱化學反應,探討其反應中間態與反應產物。所運用的表面分析技術包括:程序控溫反應/脫附(Temperature-programmed reaction/desorption, TPR/D)、反射-吸收紅外光譜(Reflection-absorption infrared spectroscopy, RAIRS)和X-光光電子能譜(X-ray photoelectron spectroscopy, XPS)。
CH3CHClCOCl/Cu(100)的熱反應脫附產物為甲基烯酮(Methyl ketene, CH3CH=C=O)。由RAIRS及XPS圖譜,發現CH3CHClCOCl吸附於Cu(100)表面(110 K)時,2個CCl鍵可同時斷鍵並形成甲基烯酮。甲基烯酮會因2-氯丙醯氯暴露量的高低,在Cu(100)上有不同的吸附情形。在低暴露量時,CH3CHClCOCl會全數分解成甲基烯酮,於180 K,甲基烯酮以2-(C,C)結構吸附在表面,最後約290 K脫附離開表面。在高暴露量時,部分CH3CHClCOCl吸附於表面時也分解形成甲基烯酮,並隨著母分子脫附一同離開表面。僅有少量的甲基烯酮會以1-(C)或2-(C,C)結構吸附於表面,低於300 K漸漸脫離表面。
另外,我們也利用DFT計算模擬CH3CHClCOCl吸附在Cu(100)的情形。結果顯示斷CCl鍵是一易行的路徑。在某些條件下,CH3CHClCOCl在Cu(100)表面上可同時去兩個氯形成甲基烯酮。
The thermal chemistry of 2-chloropropionyl chloride (CH3CHClCOCl) on Cu(100) surface in an ultrahigh vacuum (UHV) system was studied with temperature-programmed reaction/desorption (TPR/D), reflection-adsorption infrared spectroscopy (RAIRS) and X-ray photoelectron spectroscopy (XPS).
Thermal decomposition of CH3CHClCOCl on Cu(100) results in the desorption of methyl ketene (CH3CHC=C=O). The RAIRS and XPS results show that the CH3CHClCOCl molecules may undergo bond cleavage of the CHCl and C(O)Cl, simultaneously, forming to methyl ketene, upon adsorption on Cu(100) (110 K). The methyl ketene has different adsorption states on Cu(100), depending on the CH3CHClCOCl exposure. At low exposures, CH3CHClCOCl decomposes into methyl ketene completely. The methyl ketene can be bonded on the surface in 2-(C,C) structure, and finally is desorbed from the surface near 290 K. At high exposures, a part of surface CH3CHClCOCl molecules decompose to form methyl ketene, which is mostly desorbed together with the intact CH3CHClCOCl molecules. A small amount of the methyl ketene is still adsorbed on the surface with 1-(C) or 2-(C,C) structure, and eventually desorbs from the surface below 300 K.
Moreover, DFT calculations have been performed to study the adsorption of CH3CHClCOCl on Cu(100). It is found that CCl cleavage is a favorable process on Cu(100). In some calculations, complete dichlorination of CH3CHClCOCl on Cu(100) can occur to form methyl ketene.
1. Sormorjai, G., Introduction to Surface Chemistry and Catalysis. A Wiley-Interscience Press, New York 1994.
2. Christmann, K.; Ertl, G.; Pignet, T., Adsorption of Hydrogen on a Pt(111) Surface. Surface Science 1976, 54, 365-392.
3. Jia, C.-L.; Mi, S.-B.; Barthel, J.; Wang, D.-W.; Dunin-Borkowski, R.-E.; Urban, K.-W.; Thust, A, Determination of the 3D Shape of a Nanoscale Crystal with Atomic Resolution from a Single Image. Nature Materials 2014, 13, 1044-1049.
4. O’Hanlon, J. F., A User’s Guide to Vacuum Technology, 3rd Edition. John Wiley & Sons 2003.
5. Baumann, P.; Pirug, G.; Reuter, D.; Bonzel, H.-P., Uhv Adsorption Studies of K/H2O on Pt(111) and O/CH3COOH on Cu(110): Orientation and Intermediates. Surface Science 1995, 335, 186-196.
6. Sexton, B. A., Summary Abstract: Vibrational Spectra of Formate and Acetate Species on Copper (100). Journal of Vacuum Science and Technology 1980, 17, 141-142.
7. Bowker, M.; Madix, R. J., The Adsorption and Oxidation of Acetic Acid and Acetaldehyde on Cu(110). Applications of Surface Science 1981, 8, 299-317.
8. Lee, J.-G.; Ahner, J.; Mocuta, D.; Denev, S.; Yates, J. T., Thermal Excitation of Rotation of the Methyl Group in Chemisorbed Acetate on Cu(110). The Journal of Chemical Physics 2000, 112, 3351-3357.
9. Karis, O.; Hasselström, J.; Wassdahl, N.; Weinelt, M.; Nilsson, A.; Nyberg, M.; Perrersson, L. G. M.; Stöhr, J.; Samant, M.-G., The Bonding of Simple Carboxylic Acids on Cu(110). The Journal of Chemical Physics 2000, 112, 8146-8155.
10. Barteau, M. A.; Bowker, M.; Madix, R. J., Formation and Decomposition of Acetate Intermediates on the Ag (110) Surface. Journal of Catalysis 1981, 67, 118-128.
11. Erley, W.; Chen, J. G.; Sander, D., The Formation of Acetci Anhydride by Decomposition of Acetic Acid Adsorbed on Ni(111). Journal of Vacuum Science and Technology A 1990, 8, 976-978.
12. Bowker, M.; Morgan, C.; Couves, J., Acetic Acid Adsorption and Decomposition on Pd(110). Surface Science 2004, 555, 145-156.
13. Filler, M. A.; Keung, A. J.; Porter, D. W.; Bent, S. F., Formation of Surface-Bound Acyl Groups by Reaction of Acyl Halides on Ge(100)–2×1. The Journal of Physical Chemistry B 2006, 110, 4115-4124.
14. Wang, G.-T.; Mui, C.; Musgrave, C.-B; Bent, S. F., Example of a Thermodynamically Controllled Reaction on a Semiconductor Surface: Acetone on Ge(100)-21. The Journal of Physical Chemistry B 2001, 105, 12559-12565.
15. Lin, J.-L.; Bent, B. E., Carbon-Halogen Bond Dissociation on Copper Surfaces: Effect of Alkyl Chain Length. Journal of Physical Chemistry 1992, 96, 8529-8538.
16. Lin, J.-L.; Bent, B. E., Formation of Methyl Radicals During the Oxidative Addition of Iodomethane to a Single-Crystal Copper Surface. Journal of American Chemical Society 1993, 115, 2849-2853.
17. Lin, J.-L.; Teplyakov, A. V.; Bent, B. E., Effects of Alkyl Chain Structure on Carbon-Halogen Bond Dissociation and -Hydride Elimination by Alkyl Halides on a Cu(100) Surface. Journal of Physical Chemistry 1996, 100, 10721-10731.
18. Stefopoulos, A. A.; Chochos, C. L.; Prato, M.; Pistolis, G.; Papagelis, K.; Petraki, F.; Kennou, S.; Kallitsis, J. K., Novel Hybrid Materials Consisting of Regioregular Poly(3-octylthiophene)s Covalently Attached to Single-Wall Carbon Nanotubes. A European Journal 2008, 14, 8715-8724.
19. Wahjudi, P. N.; Oh, J. H.; Salman, S. O.; Seabold, J. A.; Rodger, D. C.; Tai, Y.-C. Thompson, M. E., Improvement of metal and tissue adhesion on surface-modified parylene C. Journal of Biomedical Materials Research A 2008, 89, 206-214.
20. 張麟嘉,"丙醯氯在銅(100)和氧/銅(100)表面上的熱化學研究"國立成功大學化學所碩士論文, 2020.
21. 楊子賢,"2-氯丙酸在銅(100)和氧/銅(100)表面上的熱化學研究"國立成功大學化學所碩士論文, 2015.
22. Redhead, P., Thermal Desorption of Gases. Vacuum 1962, 12, 203-211.
23. Vickerman, J., Surface Analysis-the Principle Techniques; Wiley & Sons: New York, 1997.
24. 張沛騰,"2-氟乙醇及1,4-dioxane在Cu(100)表面上的熱反應與吸附位向的研究"國立成功大學化學所碩士論文, 2003.
25. 王伯鼎,"Anthradithiophene與其衍生物在金(111)表面上的薄膜成長之研究"國立清華大學化學所碩士論文, 2009.
26. NIST Chemistry WebBook, http://webbook.nist.gov/chemistry/
27. Kim, K. S.; Barteau, M. A., Structure and Composition Requirements for Deoxygenation, Dehydration, and Ketonization Reactions of Carboxylic Acids on TiO2(001) Single-Crystal Surfaces. Journal of Catalysis 1990, 125, 353-375.
28. Field-Theodore, T. E.; Taylor, P. R., Altruism: A Higher Calling. Journal of Chemical Theory and Computation 2020, 16, 4388-4398.
29. Winther, F.; Meyar, S.; Nicolaisen, F. M., The Infrared Spectrum of Methylketene. Journal of Molecular Structure 2002, 9, 9-22.
30. Colthup, N. B.; Daly, L. H.; Wiberley, S. E., Introduction to Infrared and Raman Spectroscopy 3rd Edition. Academic Press, Inc., New York 1990.
31. Sexton, B.A.; Hugues A.E., A comparison of weak molecular adsorption of organic molecules on clean copper and platinum surfaces. Surface Science 1984, 140, 227-248.
32. 李思慧,"1-氯-2-丙醇在銅(100)和氧/銅(100)表面上的熱反應研究"國立成功大學化學所碩士論文, 2014.
校內:2026-09-08公開