簡易檢索 / 詳目顯示

研究生: 黃耀霆
Huang, Yao-Ting
論文名稱: 合成咪唑與乙二醇組成之離子液體應用於鋰電池電解質
Synthesis of ionic liquids base on imidazole and ethylene glycol as polyelectrolytes for lithium batteries
指導教授: 詹正雄
Jan, Jeng-Shiung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 69
中文關鍵詞: 高分子電解質離子液體咪唑乙二醇鋰離子電池
外文關鍵詞: polymer electrolyte, ionic liquid, imidazole, ethylene glycol, lithium battery
相關次數: 點閱:110下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中,我們合成咪唑與乙二醇組成之離子液體,並將其與陰離子置換後之聚二烯丙基二甲基氯化銨(poly diallyl dimethyl ammonium chloride) 聚離子液體和雙(三氟甲烷)磺酰亞胺鋰鹽(LiTFSI)進行一定比例的混摻,製備出三元高分子電解質膜,進而應用於鋰離子電池上。含咪唑與乙二醇離子液體之化學結構、組成及分子量由傅立葉轉換紅外線光譜儀(FT-IR)、核磁共振光譜(1H NMR)和基質輔助雷射脫附游離飛行質譜儀(MALDI/TOF-TOF)鑑定;為製備電解質膜具備可接受的力學性質,電解質膜中聚離子液體之重量比例須保有特定比例。然而,離子傳導度會因為增加聚離子液體之重量比例而使黏度上升進而使得導離子度下降。離子傳導度的量測結果顯示高分子電解質膜在聚離子液體及離子液體重量比例為1:1及鋰鹽於15%總重量比例下具備最佳的電化學性質,在低溫環境下(< 0℃)導離子度會高於混摻PYR14之高分子電解質膜;在不同充放電速率下(0.1 ~ 3 C),本研究之高分子電解質膜展現出良好之半電池電容值及充放電循環測試顯示經過100迴圈1C下仍有97%以上之庫倫效率值。

    關鍵字:高分子電解質、離子液體、咪唑、乙二醇、鋰離子電池

    In this study, we synthesized a type of ionic liquid (IL) based on imidazole and ethylene glycol (EG), and prepared the three-component polyelectrolyte membrane by mixing the ionic liquid, ion exchanged poly(diallyl dimethyl ammonium) bis(trifluoromethane)-sulfonimide (PIL-TFSI) and bis(trifluoromethane)-sulfonimide lithium salt (LiTFSI) for Li–ion battery. The chemical structure, composition and molecular weight of the as-synthesized ionic liquids composed of imidazole and ethylene glycol were characterized by FT-IR, 1H NMR MALDI/TOF-TOF. At different charge-discharge rates (0.1~3 C), the polyelectrolyte membrane exhibited the capacity of 159 mAH/g and the charge-discharge cycle test revealed that its columbic efficiency can still be well over 97% after 100 charge-discharge cycles at 0.2 C

    Key words: polymer electrolyte, ionic liquid, imidazole, ethylene glycol, lithium battery

    中文摘要 I Abstract II 誌謝 IX 目次 X 表目錄 XIV 圖目錄 XV 第一章 緒論 1 1-1前言 1 1-2研究動機 3 第二章 文獻回顧 5 2-1鋰離子電池之工作原理 5 2-2正極材料 6 2-2-1 LiFePO4 正極材料 7 2-2-2 LiCoO2 正極材料 8 2-3負極材料 9 2-3-1碳材負極材料 11 2-3-2鋰鈦複合氧化物負極材料 12 2-4電解質 13 2-4-1塑化劑 14 2-4-2導電鋰鹽 15 2-4-3高分子電解質 16 2-4-3-1固態高分子電解質 17 2-4-3-2膠態高分子電解質 19 2-4-3-3複合高分子電解質 21 2-4-4離子液體 22 2-5隔離膜 23 2-6交流阻抗分析 25 2-6-1基礎電路簡介 25 2-6-2交流阻抗分析 28 第三章 實驗 32 3-1實驗藥品與材料 32 3-2儀器設備 34 3-3樣品製備 35 3-3-1合成咪挫(imidazole)-乙二醇(2-Chloroethyl ether)離子液體 35 3-3-2合成咪挫(Imidazole)-乙三醇(Diethylene Glycol)離子液體 36 3-3-3合成咪挫(Imidazole)-乙二醇(2-Chloroethyl ether)- 乙基醚(2-Chloroethyl ethyl ether)離子液體 37 3-3-4膠態高分子電解質膜之製備 38 3-3-5電解液吸附量測試(Electrolyte uptake) 39 3-3-6離子傳導度測試(Ionic conductivity) 39 3-3-7線性掃描伏安法(Linear sweep voltammogram, LSV) 40 3-4電池組裝測試 40 3-4-1 LiFePO4正極之極片製作 40 3-4-2鈕扣型電池組裝 40 3-4-3不同速率充放電與充放電循環測試 41 3-5實驗流程圖 42 3-6實驗分析儀器與裝置 43 3-6-1傅立葉轉換紅外線光譜儀(Fourier transform infrared spectroscopy, FTIR) 43 3-6-2核磁共振光譜(1H Nuclear magnetic resonance, 1H NMR) 44 3-6-3掃描式電子顯微鏡(Scanning electron microscope, SEM) 44 3-6-4熱重分析(Thermogravimetric analysis, TGA) 45 3-6-5示差掃描量熱儀(Differential scanning calorimetry, DSC)45 第四章 結果與討論 46 4-1核磁共振光譜(1H NMR) 46 4-2傅立葉轉換紅外線光譜儀(FTIR) 47 4-3基質輔助雷射脫附游離飛行質譜儀(MALDI/TOF-TOF) 48 4-4掃描式電子顯微鏡(SEM) 50 4-5熱重分析(Thermogravimetric analysis,TGA) 51 4-6電解液吸附量(Electrolyte uptake) 52 4-7熱轉移性質(Thermal transition property) 53 4-8氧極限指數測試 (Limited oxygen index, LOI ) 54 4-9離子傳導度(Ionic conductivity) 55 4-10交流阻抗分析(Electrochemical Impedance Spectroscopy,SEI)58 4-11線性掃描伏安法(Linear scanning voltammogram,LSV) 59 4-12半電池性能測試 61 第五章 結論 66 第六章 參考文獻 67

    1. J. Tarascon, M. Armand, M. Nature 2001, 414, 359-367.
    2. 林振華, 林振富, 充電式鋰離子電池 2001.
    3. C. Sun, S. Rajasekhara, J. B. Goodenough, F. Zhou, J. Am. Chem. Soc 2011, 133, 2132-2135.
    4. 徐宗模, PP/HDPE/PP 微多孔膜之製備及作為鋰電池隔離膜之研究 2012.
    5. 曾國原, 合成奈米二氧化鈦修飾固態高分子電解質之鋰離子導電機制探討 2003.
    6. 詹勗忠, 含烯環狀酯類電解液添加劑對石墨材料表面結構及電池特性之影響研究 2009.
    7. O. Toprakci, H. A. K. Toprakci, L. W. Ji, X. W. Zhang, KONA Powder and Particle Journal 2010, 28, 50-73.
    8. A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough, J. Electrochem. Soc 1997, 144, 1188-1194.
    9. Z. Liu, J. Scott Cronin, Y. C. K. Chen-Wiegart, J. R. Wilson, K. J. Yakal-Kremski, J. Wang, K. T. Faber, S. A. Barnett, J. Power Sources 2013, 227, 267-274.
    10. Y. Shao-Horn, L. Croguennec, C. Delmas, E. C. Nelson, M. A. O'Keefe, Nat Mater 2003, 2, 464-467.
    11. L. B. Ebert, Rev. Mater. Sci 1976, 6, 181-211.
    12. J. O. Besenhard, J. Power Sources 1976, 77, 267-276.
    13. G. K. Wertheim, P. M. Van Attekum, Solid State Comm 1980, 33, 1127-1130.
    14. V. A. Nalimova, D. Guérard, M. Lelaurain, O. V. Fateev, Carbon 1995, 2, 177-181.
    15. J. Jiang, J. R. Dahn, Electrochim Acta 2004, 49, 4599-4604.
    16. K. Xu, Chem. Rev 2004, 104, 4303-4417.
    17. T. F. Yi, L. J. Jiang, J. Shu, C. B. Yue, R. S. Zhu, H. B. Qiao, J. Phys. Chem. Solids 2010, 71, 1236-1242.
    18. M. T. Weller, M. E. Brenchley, D. C. Apperlry, N. A. Davies, Solid State 1994, 3, 103.
    19. 吳宇平,萬春榮,姜長印,等.鋰離子二次電池[M ].北京:化學工業出版社2002,240.
    20. J. Kikukoh, B. Iharay. Jourmal of Physical Chemistry 1999,103,11794-11802.
    21. I. Saitoy, Journal of Physical Chemistry 2007,111,11794-180.
    22. P. V. Wright, Polymer. J 1975, 7, 319.
    23. J. Kikukoh, B. Iharay. Jourmal of Physical Chemistry 1999,103,117-142.
    24. M. B. Armand, J. R. MacCallum, Elservier 1987.
    25. D. E. Fenton, J. M. Parker, P. V. Wright, Polymer 1973, 14, 589.
    26. P. V. Wright, Polymer. J 1975, 7, 319.
    27. M. B. Armand, J. R. MacCallum, C. A. Vincent(Eds.), Polymer Electrolyte Reviews 1987.
    28. M. B. Armand, J. R. MacCallum, Polymer Electrolyte Reviews-Ι 1987.
    29. F. M. Gray, Solid Polymer Electrolytes 1991.
    30. M. Armand, W. Gorecki, R. Andreani, B. Scrosati, Proceedings in the second International Meeting on Polymer Electrolyte 1990.
    31. M. C. Wintersgill, J. J. Fontanella, Polymer Electrolyte Review 1989.
    32. C. Berthier, W. Gorecki, Solid State Ionics 1983, 11, 91.
    33. J. L. Bennett, A. A. Dembek, H. R. Allcock, Chem. Mater 1989, 1, 14.
    34. F. B. Dias, B. J. Veldhuis, J. Power Sources 2000, 88, 169-191.
    35. G. Feullade, P. Perche, J. Appl. Electrochem 1975, 5, 63.
    36. T. Nagatomo, C. Ichikawa, O. Omato, J. Electrochem. Soc 1987, 134, 305.
    37. C. Berthier, W. Gorocki, M. Minier, Solid State Ionic 1983, 11, 91.
    38. Y. Matsuo, J. Kuwna, Solid State Ionics 1995, 79, 295.
    39. E. Quartarone, C. Tomasi, P. Mustarelli, A. Magistris, Electrochemica Acta 1998, 43, 1315 .
    40. M. Forsyth, T. Sun, D. R. Mactarlane, A. J. Hill, J. Polymer. Sci 2000, 38, 341.
    41. J. E. Weston, B. C. Steele, Solid State Ionics 1982, 7, 75.
    42. F. Capuano, F. Croce, B. Scrosati, J. Electrom. Soc 1991, 138.
    43. 黃可龍, 王兆翔, 劉素琴, 鋰離子電池原理與技術 2010.
    44. W. Wieczorek, P. Lipka, G. Zukowska, H. Wycislik, J. Phys. Chem. B 1998, 102, 6968.
    45. 陳翁釧, 謝登存, 工業材料2004, 99-103.
    46. X. Qian, Materials Chemistry and Physics 2002, 74, 98-103.
    47. F. Gray, Solid polymer electrolytes: fundamentals and technological applications 1991.
    48. R. Linford, Electrochemical science and technology of polymers: Kluwer Academic Pub 1990.
    49. I. E. Kelly, J. R. Owen, B. C. H. Steele, J. Power Sources 1985, 14, 13.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE