簡易檢索 / 詳目顯示

研究生: 劉科伸
Liu, Ke-Shen
論文名稱: 探空火箭之單軸離子流速計研發
The Development of the Single Axis Ion Velocity Analyzer (SAIV) onboard Sounding Rockets
指導教授: 陳炳志
Chen, Bing-Chih
學位類別: 碩士
Master
系所名稱: 理學院 - 太空與電漿科學研究所
Institute of Space and Plasma Sciences
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 72
中文關鍵詞: 電離層離子流速計太空電漿實驗腔
外文關鍵詞: Ionosphere, Ion Drift Meter, Space Plasma Operation Chamber
相關次數: 點閱:91下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 單軸離子流速計改良自傳統離子流速計,可以量測離子密度與一維離子入射角度,將安裝於成功大學研製之探空火箭上,為「中氣層與電離層電漿探索儀器組」(MIPEX)的其中一項感測器。MIPEX之科學目標是透過量測分析中氣層與低電離層的環境電漿參數,包含離子與電子之速度、溫度與能量分布等,瞭解其動態過程。
    單軸離子流速計與傳統離子流速計最大的不同是透過減少蒐集離子的電極數量,降低資料傳輸量,並且提升訊號雜訊比。經由兩片電極蒐集到的電流,可以得到單軸離子飄移速度與離子密度兩項電漿參數。利用慣性測量單元、磁力計和全球定位系統等其他火箭上的感測器提供火箭的姿態與速度,可以進一步建構出二維離子飄移速度。本論文中探討儀器設計原理、電路結構、離子入射軌跡之理論模擬以及雛形體與飛行體在實驗中的測試結果。
    在實際測量中,離子入射軌跡容易被儀器內的電位影響,為了瞭解此效應並估計其誤差貢獻,使用 SIMION 軟體以不同入射角和能量之離子模擬其軌跡並且分析。模擬結果指出低能量離子容易受到電位不均勻的影響而彎折,對於實驗的量測將會產生較大的誤差。太空電漿實驗腔的實驗驗證了單軸離子流速計飛行體的功能與性能,實驗結果與模擬吻合,顯示單軸離子流速計可以滿足探空火箭任務的科學量測需求。此項探空火箭任務預計於 2020 年發射。

    The single-axis velocity analyzer, SAIV, a simplified IDM, is capable of simultaneously measuring the ion density and 1-D ion drift velocity, as one of the sensors in the space plasma instrument package "Mesosphere and Ionosphere Plasma Exploration complex (MIPEX)" is going to be installed onboard a university-based hybrid sounding rocket, to investigate the electrodynamic processes in the D, E layers of the ionosphere above Taiwan will be reported.
    The original design of the IDM is modified by reducing the number of collector segments from four to two, to reduce the data rate and to increase the SNR, the single-axis ion drift velocity is derived. With information about the attitude and velocity provided by other rocket sensors such as inertial measurement unit (IMU), magnetometer and GPS receiver. 2-D Ion velocities can be furtherly constructed from one full spin of the rocket. In this work, the design concept, performance analysis by simulation, hardware development and in-lab experiment of the SAIV is presented.
    In a practical measurement, the trajectories of the incident ions are easily affected by the potential supplied by the grids in the sensor. To investigate this effect and to estimate the error, the trajectories of the ions are comprehensively simulated by the SIMION software with different incident angles and ion energies. The results show that the ions with lower energy are easier to be bended and have more contribution in the measurement error. The functionality and performance tests of SAIV are verified by experiments in the space plasma operation chamber, and the results agree with the simulation and it indicates that this sensor SAIV satisfies the requirements of the sounding rocket mission which is scheduled to be launched in 2020.

    Abstract I 摘要 II 致謝 III Contents IV List of Figure VI Chapter 1. Introduction 1 1.1 Plasma 1 1.2 The Earth’s ionosphere 1 1.3 NCKU Sounding rocket mission 4 1.4 Mesosphere and Ionosphere Plasma Exploration CompleX 5 1.5 Thesis motivations 8 Chapter 2. Design of Single Axis Ion Velocity Analyzer 9 2.1 Introduction of IDM 9 2.2 The principle of the Single Axis Ion Velocity Analyzer 12 2.3 Mechanical structures 18 2.4 Pre-amplifier circuit of SAIV 20 2.5 SAIV pre-amp performance tests 27 2.6 Sampling methods and data rate estimation 32 Chapter 3. Ion simulation by SIMION 34 3.1 Simulation Methods 34 3.2 Electric potential profiles in SAIV 36 Chapter 4. Experiments in Space Plasma Operation Chamber and results 44 4.1 Plasma environment in SPOC 44 4.2 Experiment setups 47 4.3 Results with different incident angles by the SAIV prototype model 48 4.4 Results with different incident angles by the SAIV flight model 51 4.5 Comparison between simulation and experiment results 54 4.7 Possible error introduced by 2-D simulations 62 4.8 Effect of the solar extreme ultraviolet (SEUV) radiation 65 5. Summaries and Conclusions 69 References 71

    Bilitza, D. & B. W. Reinisch (2008), International reference ionosphere 2007: improvements and new parameters, Advances in space research, 42(4), 599-609.
    Chao, C. K., Y. H. Chu, C. L. Su, and S. Minami (2012), In-situ measurement of Ionospheric E-region plasma irregularities over Taiwan, Terr. Atmos. Ocean. Sci., 23(3), 333-342.
    Chen, A. B., Yi Yang, and H. K. Fang (2017), NSPO Sounding Rocket Mission Preliminary Design (PDR) Report.
    Correira, J., Aikin, A. C., Grebowsky, J. M., Pesnell, W. D., & Burrows, J. P. (2008), Seasonal variations of magnesium atoms in the mesosphere‐thermosphere, Geophysical Research Letters, 35(6).
    Fang, H. K., K. I. Oyama, and A. B. Chen (2017), Back-diffusion plasma generator for ionosphere study, Plasma Sources Science and Technology, 26, 115010.
    Fang H. K., K. -I. Oyama, and C. Z. Cheng (2015), Plasma Measurements in the Space Plasma Operation Chamber (SPOC), Chin. J. Phys., 53(1), 1-30.
    Heels R. A., W. B. Hanson, C.R.Lippincott, and D.R.Zuccaro (1982), Ion Drift Meter for Dynamic Explorer, NASA CR-166795.
    Immel, T. J., S. England, S. B. Mende, R. A. Heelis, C. R. Englert, J. Edelstein, H. U. Frey, E. Taylor, W. Craig, G. S. Bust, G. Crowley, J. M. Forbes, J. C. M. C. Gerard, J. Harlander, J. Huba, B. A. Hubert, F. Kamalabadi, J. J. Makela, A. I. Maute, R. J. Meier, C. L. Raftery, K. Hauck, P. Rochus, O. Siegmund, A. W. Stephan, G. R. Swenson, S. Frey, D. L. Hysell, A. Saito (2016), The Ionospheric Connection Explorer (ICON) : Mission Design and Planning, AGU Fall meeting abstract SA11A-01, San Francisco, USA.
    Lin, Z. W., C. K. Chao, J. Y. Liu, C. M. Huang, Y. H. Chu, C. L. Su, Y. C. Mao, and Y. S. Chang (2017), Advanced Ionospheric Probe scientific mission onboard FORMOSAT-5 satellite, Terr. Atmos. Ocean. Sci., 28, 99-110.
    Spencer, N. W., L. H. Brace, & D. W. Grimes (1973), The atmosphere explorer spacecraft system, Radio Science, 8, 267-269.

    下載圖示 校內:2021-03-10公開
    校外:2021-03-10公開
    QR CODE