簡易檢索 / 詳目顯示

研究生: 廖俊翔
Liao, Chun-Hsiang
論文名稱: 液旋式噴注之交互作用對燃燒現象的影響觀察
The Observation of Flame Distribution Affected by Swirling Effect among the Liquid Cyclonic Injection Elements
指導教授: 袁曉峰
Yuan, Hsiao-Feng
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 60
中文關鍵詞: 航空燃油基燃料/過氧化氫液旋式噴注器噴注盤
外文關鍵詞: Jet propellant-base fuel, hydrogen peroxide, liquid cyclonic injector, injector plate
相關次數: 點閱:93下載:32
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 液旋噴注器之間的交互作用對燃燒室及噴注盤的設計甚為重要,本研究為了瞭解其詳細交互作用,透過冷流觀察及熱燃點火實驗分析探討噴注器於不同相對位置時的交互作用,以提出較佳的設計方案。液旋式噴注器因其液旋特性,導致火焰分布不均,且在熱燃點火實驗時會噴出尚未氣化之推進劑。本研究改變噴注器間距(X/R = 2.6, 3.0, 4.0),以水作為冷流實驗流體觀察三噴注器噴注之交互作用對於液體推進劑分布影響;實驗觀察到尚未霧化之液膜會因為互相撞擊導致液膜提早破碎,原先單噴注霧化之空心區域在交互作用後會出現液滴分布,使得噴霧分布均勻度提升。本研究亦以W2JP與過氧化氫搭配具壓力噴嘴之液旋式噴注器組合而成的噴注盤進行熱燃實驗;由於本實驗條件設定在富油(Fuel Rich)條件下,互相靠近時三噴注器排列下交互作用會有尚未氣化之過氧化氫穿透,破壞螺旋結構,造成火焰中心局部混合比提高,燃燒反應較劇烈,OH*螢光強度提高;當三噴注器距離過近時(X/R = 2.6)因為燃燒反應較劇烈,高溫氣體產生量較大,也因此具較快的軸向速度,故熱釋放率最高位置出現在較下游處。在本研究的實驗範圍內,噴注器交互作用後可重新調整OH*之分布狀態,噴注器中心間距為21 mm(X/R = 3.0)之排列為目前實驗顯示火焰分布最為均勻,是較適當之排列方式。

    The interaction between liquid cyclonic injectors has a significant impact on the design of the combustion chamber and the injector plate. Therefore, this study aims to understand the detailed interaction between these injectors through cold flow observation and thermal ignition experiments, analyzing the interaction of injectors at different relative positions to propose optimal design solutions.
    The liquid cyclonic injectors, due to their swirling characteristics, result in uneven flame distribution. Additionally, in the thermal ignition experiments, there is the issue of spraying unvaporized propellant. In this research, the injector spacing (X/R = 2.6, 3.0, 4.0) was varied, and water was used as the cold flow experimental fluid to observe the effect of interaction between three injectors on the distribution of liquid propellant. The experiments revealed that the non-atomized liquid film would break prematurely due to mutual collisions, and after interaction, the previously hollow area from a single atomized injection would exhibit a distribution of liquid droplets, thereby enhancing the uniformity of spray distribution. Furthermore, this study also conducted thermal ignition experiments using a injector plate composed of W2JP and hydrogen peroxide combined with pressurized nozzles. Given that the experimental conditions were set under fuel-rich conditions, when the three injectors were positioned closely together, the interaction led to the penetration of unvaporized hydrogen peroxide, disrupting the spiral structure. This resulted in an increased local mixture ratio at the flame center, leading to more intense combustion reactions and higher OH* fluorescence intensity. When the three injectors were positioned very closely (X/R = 2.6), the more intense combustion reactions led to a larger production of high-temperature gases and consequently a faster axial velocity, causing the location of the highest heat release rate to appear downstream. Within the scope of this study's experiments, the interaction between injectors could readjust the distribution state of OH*. Among the studied arrangements, the one with an injector spacing of injector centers are 21 mm apart (X/R = 3.0) exhibited the most uniform flame distribution, making it a more suitable configuration.

    摘要 i 誌謝 vii 目錄 viii 表目錄 x 圖目錄 xi 第一章 緒論 1 1.1前言 1 1.2文獻回顧 2 1.3研究動機與目的 5 第二章 研究方法 7 2.1液旋式噴注器 7 2.2噴注盤 8 2.3冷流實驗 9 2.4熱燃實驗 10 2.5自然螢光觀測法 10 2.6平面雷射誘導螢光技術(Plane Laser Induced Fluorescence) 12 2.7陰影法(Shadowgraph) 13 第三章 實驗設備 14 3.1推進劑原料 14 3.2過氧化氫純化設備 15 3.3流量供應系統 18 3.4噴注盤固定檯架 20 3.5影像拍攝系統 23 第四章 實驗結果與討論 28 4.1冷流實驗 28 4.1.1冷流實驗—陰影法觀察結果 29 4.1.2冷流實驗—平面雷射誘導螢光技術(PLIF)觀察結果 32 4.2熱燃點火實驗 33 4.2.1噴注盤熱燃點火實驗火焰外型觀察 35 4.2.2自然螢光觀測法 45 第五章 結論與未來工作 52 5.1結論 52 5.2未來工作 53 參考文獻 54 附錄 56   表目錄 表 一、單噴注與三噴注火焰最亮位置 35 表 二、單噴注與三噴注OH*強度最強位置 45   圖目錄 圖 一、液旋式噴注單元火焰影像 6 圖 二、壓力噴嘴液旋式噴注器 8 圖 三、噴注盤截面示意圖 9 圖 四、自由基放射光譜波長對強度圖[17] 11 圖 五、可通過帶通濾光片波長圖(310±2 nm)[19] 12 圖 六、JP10化學結構[20] 15 圖 七、過氧化氫純化設備 17 圖 八、流量供應系統 19 圖 九、流量供應系統3D設計圖 20 圖 十、檯架示意圖 22 圖 十一、Phantom V711高速攝影機 24 圖 十二、SIGMA 180 mm微距定焦鏡頭 25 圖 十三、Pi-Max3 26 圖 十四、UV-NIKKOR鏡頭 26 圖 十五、Z50相機 27 圖 十六、NIKKOR 105 mm微距鏡頭 27 圖 十七、高速攝影機拍攝之熱燃點火實驗噴出尚未氣化液滴瞬時影像(單噴注器混合比為3.8,燃料質量流率5.3 g/s,氧化劑質量流率20.0 g/s) 28 圖 十八、單液旋式噴注器高速攝影機陰影法影像平均圖(質量流率16.8 g/s ,曝光時間30 μs) 29 圖 十九、單液旋式噴注器影像平均圖距出口5 mm處切線圖 30 圖 二十、三噴注器(X/R = 2.6)高速攝影機陰影法影像平均圖(單噴注器質量流率16.8 g/s,曝光時間30 μs) 30 圖 二十一、三噴注器(X/R = 2.6)影像平均圖距出口5 mm處切線圖 31 圖 二十二、三噴注器(X/R = 2.6)高速攝影機陰影法影像瞬時圖(單噴注器質量流率16.8 g/s,曝光時間30 μs) 31 圖 二十三、單噴注器高速攝影機PLIF影像平均圖(質量流率16.8 g/s ,曝光時間100 μs) 32 圖 二十四、三噴注器(X/R = 2.6)高速攝影機PLIF影像平均圖(單噴注器質量流率16.8 g/s ,曝光時間100 μs) 33 圖 二十五、根據NASA CEA所得不同混合比下的溫度(燃料為W2JP,氧化劑為濃度95%以上之過氧化氫,噴嘴擴張比為100) 34 圖 二十六、根據NASA CEA所得不同混合比下的比衝(燃料為W2JP,氧化劑為濃度95%以上之過氧化氫,噴嘴擴張比為100) 34 圖 二十七、單噴注器混合比=4.1(燃料質量流率5.2 g/s,氧化劑質量流率21.1 g/s)平均火焰圖 36 圖 二十八、單噴注器混合比=4.1(燃料質量流率5.2 g/s,氧化劑質量流率21.1 g/s)平均火焰亮度圖 37 圖 二十九、三噴注器(X/R = 2.6)混合比=4.0(三噴注器燃料質量流率15.2 g/s,氧化劑質量流率61.1 g/s)平均火焰圖 38 圖 三十、三噴注器(X/R = 2.6)混合比=4.0(三噴注器燃料質量流率15.2 g/s,氧化劑質量流率61.1 g/s)平均火焰亮度圖 39 圖 三十一、三噴注器(X/R = 3.0)混合比=4.1(三噴注器燃料質量流率14.7 g/s,氧化劑質量流率60.0 g/s)平均火焰圖 40 圖 三十二、三噴注器(X/R = 3.0)混合比=4.1(三噴注器燃料質量流率14.7 g/s,氧化劑質量流率60.0 g/s)平均火焰亮度圖 41 圖 三十三、三噴注器(X/R = 4.0)混合比=4.3(三噴注器燃料質量流率14.3 g/s,氧化劑質量流率61.7 g/s)平均火焰圖 42 圖 三十四、三噴注器(X/R = 4.0)混合比=4.3(三噴注器燃料質量流率14.3 g/s,氧化劑質量流率61.7 g/s)平均火焰亮度圖 43 圖 三十五、左至右:單噴注器、三噴注器(X/R = 2.6)、三噴注器(X/R = 3.0)、三噴注器(X/R = 4.0)平均火焰圖 44 圖 三十六、左至右:單噴注器、三噴注器(X/R = 2.6)、三噴注器(X/R = 3.0)、三噴注器(X/R = 4.0)平均火焰亮度圖 44 圖 三十七、高速攝影機拍攝之熱燃點火尚未氣化過氧化氫穿透瞬時影像 46 圖 三十八、單噴注器混合比=4.1(燃料質量流率5.2 g/s,氧化劑質量流率21.1 g/s)OH*自然螢光強度圖 47 圖 三十九、三噴注器(X/R = 2.6)混合比=4.0(三噴注器燃料質量流率15.2 g/s,氧化劑質量流率61.1 g/s)OH*自然螢光強度圖 48 圖 四十、三噴注器(X/R = 3.0)混合比=4.1(三噴注器燃料質量流率14.7 g/s,氧化劑質量流率60.0 g/s) OH*自然螢光強度圖 49 圖 四十一、、三噴注器(X/R = 4.0)混合比=4.3(三噴注器燃料質量流率14.3 g/s,氧化劑質量流率61.7 g/s)OH*自然螢光強度圖 50 圖 四十二、左至右: 單噴注器、三噴注器(X/R = 2.6)、三噴注器(X/R = 3.0)、三噴注器(X/R = 4.0) OH*自然螢光強度圖 51 圖 四十三、單渦旋式壓力噴嘴噴霧角θ為98.5度(單噴嘴質量流率:5.0 g/s) 56 圖 四十四、雙渦旋式壓力噴嘴θ1=106.8度;θ2=101.2度 (單噴嘴質量流率5.0 g/s) 56 圖 四十五、渦漩式壓力噴嘴陰影法平均影像雙渦旋式壓力噴嘴交互作用點約距噴注口8.5 mm (單噴嘴質量流率:5.0 g/s) 57 圖 四十六、三噴注器(X/R = 2.6)液膜撞擊位置約距噴注口1.5 mm(單噴注器質量流率16.8 g/s) 58 圖 四十七、三噴注器(X/R = 3.0)液膜撞擊位置約距噴注口3.0 mm(單噴注器質量流率16.8 g/s) 59 圖 四十八、三噴注器(X/R = 4.0)液膜撞擊位置約距噴注口5.0 mm(單噴注器質量流率16.8 g/s) 60

    [1] Sutton, G. P., Rocket Propulsion Elements, John Wiley & Sons, Inc., 1992
    [2] I.-H ,She “Auto-ignition of Kerosene/Hydrogen Peroxide Bipropellent” M.S. thesis ,Department of Aeronautic and Astronautics, National Cheng Kung University ,2015
    [3] Billant, P., Chomaz, J. M., & Huerre, P. “Experimental study of vortex breakdown in swirling jets” Journal of Fluid Mechanics, vol. 376, pp.183-219, 1998
    [4] Vishwanath, R. B., Tilak, P. M., & Chaudhuri, S. “An experimental study of interacting swirl flows in a model gas turbine combustor” Experiments in Fluids, vol. 59, pp.1-17, 2018
    [5] Bennewitz, J. W., & Frederick, R. A. “Overview of combustion instabilities in liquid rocket engines-coupling mechanisms & control techniques”, 49th AIAA/ASME/SAE/ASEE Joint PropulsionConference, no. 4106, 2013
    [6] R. K. Palme “Development and Testing of Non-toxic Hypergolic Miscible Fuels” School of Aeronautics and Astronautics. MS Thesis, Purdue University, West Lafayette ,IN ,2002
    [7] Y. T. Chen, T. Yuan “Two-Stage Impinging-Jet Injector Flow Dynamics and Mixing: Kerosene and Hydrogen Peroxide Propellants” Combustion Science and Technology, pp.1-18,2023
    [8] W. L. Lin, “The effect of the orifice size on the mixing of unlike-doublet impinging jets” M.S. thesis ,Department of Aeronautic and Astronautics, National Cheng Kung University ,2008
    [9] Y. T. Chen, “The Observation of NTO/MMH Simulants Impinging In High Ambient Pressure” M.S. thesis ,Department of Aeronautic and Astronautics, National Cheng Kung University ,2009
    [10] J.Y. Zhou, “The Injector Plate Design of a 500lbf Kerosene Base / H2O2 Liquid Rocket Engine” M.S. thesis ,Department of Aeronautic and Astronautics, National Cheng Kung University ,2016
    [11] C. C. Yu, “The Injector Plate Design of a 100N Kerosene Base/H2O2 Thruster” M.S. thesis ,Department of Aeronautic and Astronautics, National Cheng Kung University ,2017
    [12] T. L. Pourpoint, W. E. Anderson “Hypergolic reaction mechanisms of catalytically promoted fuels with rocket grade hydrogen peroxide” Combustion Science and Technology ,vol. 179(10) ,pp.2107-2133 ,2007
    [13] T. Yuan, Y. T. Chen, & B Huang “ Semi-hypergolic kerosene/hydrogen peroxide fuel system and its auto-ignition injector design” 51st AIAA/SAE/ASEE Joint Propulsion Conference ,pp. 3847 ,2015
    [14] P.-C ,Shih “Enhancement of Liquid Mixing Between Propellants in Liquid Cyclonic Injector” M.S. thesis ,Department of Aeronautic and Astronautics, National Cheng Kung University ,2019
    [15] T.-Y ,Lien “The Autoignition Mechanism of Liquid Cyclonic Injector” M.S. thesis ,Department of Aeronautic and Astronautics, National Cheng Kung University ,2020
    [16] Z. Wang, F. He, H Zhang, P. Hao, X. Zhang, & X. Li “Characterization of the in-focus droplets in shadowgraphy systems via deep learning-based image processing method” Physics of Fluids ,2022
    [17] Docquier, N., & Candel, S. “Combustion control and sensors: a review” Progress in energy and combustion science, vol.28(2) ,pp.107-150 ,2002
    [18] L. He, Q. Guo, Y. Gong, F. Wang, & G. Yu “investigation of OH* chemiluminescence and heat release in laminar methane–oxygen co-flow diffusion flames” Combustion and Flame, vol 201, pp.12-22 ,2019
    [19] Edmund optics, “310nm CWL, 25mm Dia., Hard Coated OD 4.0 10nm Bandpass Filter” , https://www.edmundoptics.com.tw/p/310nm-cwl-25mm-dia-hard-coated-od-4-10nm-bandpass-filter/33102/,accessed July 2023
    [20] Bruno, T. J., Huber, M. L., Laesecke, A., Lemmon, E. W., & Perkins, R. A. “Thermochemical and thermophysical properties of JP-10” Technical ReportNISTIR ,2006

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE