簡易檢索 / 詳目顯示

研究生: 葉昌鑫
Ye, Chang-Sin
論文名稱: 應用於微波無線通訊系統之多頻帶通濾波器之設計與製作
Design and fabrication of multi-band bandpass filter for microwave wireless communication system
指導教授: 蘇炎坤
Su, Yan-Kuin
共同指導教授: 翁敏航
Weng, Min-Hang
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 106
中文關鍵詞: 多頻濾波器步階式阻抗共振器負載樁式共振器
外文關鍵詞: multi-band, filter, stepped-impedance resonator, stub loaded resonator
相關次數: 點閱:157下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文內容主要分為四部分: (a)平面式雙頻帶通濾波器與超寬頻帶通濾波器之設計;(b) 以共面波導傳輸線(CPW)與負載樁式共振器設計之三頻帶通濾波器;(c) 步階阻抗型負載樁式共振器設計之四頻帶通濾波器;(d) 以氮化鋁薄膜披覆之高阻值矽基板技術以及設計於該基板上之毫米波低通與高通濾波器。
    第一部分介紹具有雙頻帶之帶通濾波器之設計,其內容為分別討論四個濾波器元件之設計。首先討論可應用於無線區域網路(WLAN) 系統,中心頻率位於2.4 GHz與5.2 GHz之雙頻帶通濾波器,其以步階式阻抗共振器控制頻率,並以交錯耦合方式增加傳輸零點而增強了雙通帶之選擇性(selectivity)。第二個元件則為一雙工器元件,其結合可用於超寬頻(UWB)系統,通帶範圍為2.98至 5.1GHz的寬頻帶通濾波器,以及中心頻率位於2.4 GHz的藍牙(Bluetooth)的帶通濾波器所組成。藉由良好設計的T型匹配電路連接,可使二濾波器獨立運作而不互相干擾,形成一具有三埠的雙工器元件。第三個元件則是以平行耦合線結合槽線結構實施的雙頻超寬頻(UWB)帶通濾波器之設計。其利用一可產生傳輸零點的槽線結構,可在通帶範圍為3.4至 9.9 GHz的超寬頻(UWB)系統內,於5.2 GHz處製造一壓抑量為18 dB以上的傳輸零點,可隔離5-6 GHz頻段內之無線區域(WLAN)網路信號干擾。
    在第二部分之研究中,則介紹具有三通帶的二組帶通濾波器之研究,首先為以共面波導傳輸線(CPW)實現之三頻帶通濾波器,其以半集總式電路法(semi-lump)設計,具有低諧波干擾之優點,且可各別調整通帶之中心頻率,達成一具有高自由度之設計,其中心頻率位於1.30 GHz,2.03 GHz 及 2.74 GHz。且因共平面波導結構設計具有易實現於微波積體電路(MMIC)上之特性,因此該設計具有可實現於毫米波頻段之潛力。第二個濾波器則為以微小化的負載樁式共振器(SLR)所設計的三頻帶通濾波器,負載樁式共振器具有單一共振器可產生三個可控制之共振模態的特性,因此藉由調整該三個共振態之頻率,可達成以二個共振器設計出三頻率帶通濾波器之目標,可將所需使用之共振器數量減到最少,達到縮小元件尺寸之目的,其為目前最微小化之三頻濾波器設計。此外,以零度饋入方式使其可於三個通帶之間產生二個傳輸零點而具有良好的通帶選擇性。其中心頻率為2.4 GHz、3.5 GHz與5.2 GHz,可應用於無線區域網路(WLAN),全球互通微波存取(WiMAX)之系統。
    於第三部分研究中,本論文提出一四頻帶通濾波器之設計。以第二部分所提出之負載樁式共振器為基礎,搭配步階式阻抗共振器之設計原理改良。可產生第四個可控制之共振模態。因此可以單一共振器產生四共振模態之方式,實現一使用最少共振器數量之四頻帶通濾波器,其具有元件尺寸微小化之優點。該濾波器中心頻率分別為1.8 GHz、2.4 GHz、3.5 GHz與5.2 GHz,可應用於全球行動通訊系統(GSM),無線區域網路(WLAN),全球互通微波存取(WiMAX)之系統。此外,以零度饋入方式使其可於四個通帶之間產生四個傳輸零點,使該濾波器之複數個通帶間具有高阻隔性。
    於第四部分研究中,本論文提出以氮化鋁薄膜作為高阻值基板之表面披覆膜,降低以氧化層披覆基板時,所造成基板的微波損失。以氮化鋁薄膜披覆之共面波導線在17 GHz時具有較低的衰減量為0.5 dB/mm。並以共面波導傳輸線形式設計了截止頻率位於 23 GHz的高通濾波器以及截止頻率為32 GHz的低通濾波器元件,實現氮化鋁薄膜披覆基板應用於毫米波頻段之元件設計技術。

    The thesis divides into four parts: (a) design of the dual-band bandpass filters and UWB filters (b) design of the tri-band bandpass filters based on coplanar waveguide line (CPW) and stub loaded resonator (SLR); (c) design of the quad-band bandpass filter using the SLR with stepped impedance resonator section;and (d) surface passivation method with AlN film on high resistivity silicon (HRS) substrate and the design of the millimeter CPW filter on AlN passivated HRS substrate .
    In the first part of the dissertation, we introduce four bandpass filter designs. First, we proposed a the dual-band bandpass filter designed by using the stepped impedance resonator (SIR) to control the frequencies locations to correspond to the wireless local area network (WLAN) 2.4 and 5.2 GHz applications, and cross-coupling method is used to create the transmission zeros at passband edge to achieve the goal of high selectivity; the second device is a diplexer designed with two passbands corresponding to UWB system with bandwidth of 2.98-5.1 GHz, and t Bluetooth system with center frequency at 2.4 GHz. By means of the T-junction matching circuit, the two filters can operate individually without interference each other to form a 3-port diplexer ; the third device is the design of the dual-band bandpass filter with UWB response by using the combination of slot-line and parallel couple line structure. A stub loaded slot-line can be used to create a transmission zero at 5.2 GHz with suppression above 18 dB within the bandwidth of 3.4-9.9 GHz. The method can be used to avoid the interference from the WLAN within 5-6 GHz.
    In the second part of the dissertation, we propose the research about two bandpass filters with triple passband response. First, the tri-band bandpass filter realized by coplanar waveguide line (CPW) is proposed with semi-lump mechanism, which exhibits the property of less harmonic interference. Furthermore, the passband center frequency can be adjusted individually and thus high design freedom can be achieved. The center frequencies in this application are 1.30 GHz, 2.03 GHz and 2.74 GHz. This design has the potential of being used to realize the monolithic microwave integrated circuit (MMIC) design. The second device is a compact tri-band bandpass filter designed by stub loaded resonator (SLR) with three controllable resonant modes. By means of tunning the frequencies of the three resonant modes, tri-band filter response can be designed by only one pair of resonators, therefore the number of the resonator for realizing tri-band filter can be reduced to achieve the goal of compact size. Furthermore, the zero degree feed method are used to create two transmission zeros between the three passbands and thus good passband selectivity are induced. The proposed device is designed with the center frequencies at 2.4, 3.5 and 5.2 GHz, corresponding to the system requirement of the WLAN, and WiMAX(Worldwide Interoperability for Microwave Access) services.
    In the third part of the dissertation, we propose the design of the bandpass filter with quad-passband response. The quad-band filter is designed based on the tri-mode SLR proposed in the second part of the dissertation. With combing the design theory of SIR to improve the tri-mode SLR, the fourth controllable resonant mode is induced. Therefore the improved SLR with quad-mode property can create four transmission poles to realize design of a compact quad-band bandpass filter with the minimum number of resonators. The quad-band filter has the passband center frequencies at 1.8 GHz, 2.4 GHz, 3.5 GHz and 5.2 GHz, which can be used for global system for mobile communications (GSM), WLAN, and WiMAX. Besides, good passband selectivity and isolation are also achieved by inducing four transmission zeros locating between the four passbands and passband edge.
    In the fourth part of the dissertation, we propose a new surface passivation method by using aluminum nitride (AlN) film as the passivation layer to suppress the surface conductive channel on high resistivity silicon (HRS). The improved effects on reducing the attenuation in microwave region have been verified with the measured attenuation of 0.5 dB/mm at 17 GHz. Furthermore, the integrated millimeter-wave high-pass filter (HPF) and low-pass (LPF) have been fabricated on such substrate. The measured results have a satisfied insertion loss lower than 1 dB, return loss of -14 dB, and a transmission zero appeared in the passbnad edge to enhance the band selectivity. Therefore, this study is helpful for improving the passive device performance as introducing the HRS.

    摘要 I Abstract III Table Captions IX Figure Captions X Chapter 1 General Introduction 1 1.1 Background 1 1.2 General review of multi-band filters 2 1.2.1 Review of dual-band filters 2 1.2.2 Review of tri-band filters 2 1.2.3 Review of quad-band filters 3 1.3 Organization of the thesis 3 Chapter 2 Planar Transmission Line and Filter Design Theory 11 2.1 Introduction 11 2.2 The properties of microstrip lines 11 2.2.1 Microstrip structure 11 2.2.2 Waves in microstrip and Quasi-TEM approximation 12 2.2.3 Effective dielectric constant and characteristic impedance 12 2.2.4 Guided wavelength, propagation constant, phase velocity, and electrical length 13 2.2.5 Dispersion in microstrip and microstrip losses 13 2-3 The Properties of coplanar waveguide lines 15 2.3.1 Effective dielectric constant and characteristic impedance 15 2.3.2 Coplanar waveguide losses 16 2.4 Basic theory of microwave filters 18 2.5 Design theory of multi-band filter 20 2.5.1 Stepped impedance resonatror (SIR) 20 2.5.2 Stub loaded resonator (SLR) 22 Chapter 3 Design of Dual-band Bandpass Filters for UWB and WLAN applications 32 3.1 Introduction 32 3.2 Design of a high selectivity dual-band bandpass filter with stepped impedance resonator 34 3.2.1 Analysis of dual band filter 34 3.2.2 Results and discussion 35 3.3 The Ring-Like Diplexer for Bluetooth and UWB Application 36 3.3.1 Analysis of the proposed dual-mode diplexer 36 3.3.2 Experimental results and discussion 37 3.4 The Compact Dual-Band UWB Filter Based On the Parallel Line Structure with the Slot-Line 38 3.4.1 The proposed filter design 38 3.4.2 Experimental results and discussion 39 3.5 Summary 39 Chapter 4 Design of the Tri-Band Bandpass Filters with CPW and Tri-Mode SLR 49 4.1 Introduction 49 4.2 The triple-band coplanar-waveguide bandpass filter 50 4.2.1 Layout of the triple-band CPW bandpass filter 50 4.2.2 Design of the first passband of the filter 50 4.2.3 Design of the second and third passbands of the filter 50 4.2.4 Experiments 51 4.3 Tri-band bandpass filter with transmission zeros designed by using stub loaded resonators 52 4.3.1 Determining the center frequencies 52 4.3.2 Determining the I/O structure 53 4.3.3 Determining the coupling gap 54 4.3.4 Experimental results 54 4.4 Summary 55 Chapter 5 Compact Quad-Band Bandpass Filter Based on Quad-Mode Stub Loaded Resonators 64 5.1 Introduction 64 5.2 Design procedure of the quad-band filter 65 5.2.1 Resonant frequencies decision of quad-mode SLR Resonator 65 5.2.2 Filter topology design 66 5.2.3 Experimental results 67 5.3 Summary 67 Chapter 6 New Substrate Passivation Method for High Resistivity Silicon with AlN Film and Filter 72 6.1 Introduction 72 6.3 Results and discussion for RF characteristics 74 6.5 Results and discussion for fabricated filter 78 6.6 Summary 79 Chapter 7 Conclusions and Future Works 88 7.1 Conclusions 88 7.2 Future works 90 References 91 Vita 104 List of Publications 105

    Chapter 1
    [1] http://dsp-fpga.com/article-id/?2095
    [2] http://techon.nikkeibp.co.jp/article/HONSHI/20061115/123635/
    [3] http://www.docstoc.com/docs/120955719/Figure1-1-Unilateral-RF-front-end-(a)-a-receiver-with-two-mixing-
    [4] http://www.2cm.com.tw/technologyshow_content.asp?sn=0809100007
    [5] http://www.epcos.com/web/generator/Web/Sections/Components/Page,locale=en,r=263282,a=248308.html
    [6] S. Luo, L. Zhu, and S. Sun, “Compact dual-mode triple-band bandpass filters using three pairs of degenerate modes in a ring resonator,” IEEE Trans. Microw. Theory Tech., vol. 59, pp.1222-1229, 2011.
    [7] W. Y. Chen, S. J. Chang, M. H. Weng, Y. H. Su, and H. Kuan, “Simple method to design a tri-band bandpass filter using asymmetric SIRs for GSM, Wimax and WLAN applications, Microwave Opt. Technol. Lett., vol. 53, pp. 1573-1576, 2011.
    [8] C. F. Chen, T. Y. Huang, and R. B. Wu, “Design of dual- and triple-passband filters using alternately cascaded multiband resonators,” IEEE Trans. Microw. Theory Tech., vol. 54, no.9, pp. 3550–3558, Sept. 2006.
    [9] F. C. Chen and Q. X Chu, “Design of compact tri-band bandpass filters using assembled resonators,” IEEE Microw. Theory Tech., vol. 57, pp. 165–171, 2009.
    [10] C. I G. Hsu, C. H. Lee, and Y. H. Hsieh, “Tri-band bandpass filter with sharp passband skirts designed using tri-section SIRs,’’ IEEE Microw. Wireless Compon. Lett., vol. 18, no. 1, pp. 19-21, Jan. 2008.
    [11] S. Gao , Z. Y. Xiao, H. H. Hu, “A novel compact dual-band bandpass filter using SIRs with open-stub line,” Microwave Conference, 2008 China-Japan Joint, pp. 464-466, 2008.
    [12] W. Y. Chen, M. H. Weng, S. J Chang, and H. Kuan, “A high selectivity dual-band filter using ring-like SIR with embedded coupled open stubs resonators.” Journal of Electromagnetic Waves and Applications, vol. 25, pp. 2011-2021, 2011.
    [13] M. H. Weng, C. H. Kao, and Y. C. Chang, “A compact dual-band bandpass filter with high band selectivity using cross-coupled asymmetric SIRs for WLANs,” Journal of Electromagnetic Waves and Applications, vol. 24, pp. 161-168, 2011.
    [14] M. D. C. Velazquez-Ahumada , J. Martel-Villagr, F. Medina, and F. Mesa, “Application of stub loaded folded stepped impedance resonators to dual band filter design,” Progress In Electromagnetics Research, vol. 102, pp. 107-124, 2010.
    [15] Lai, X., N. Wang, B. Wu, and C.-H. Liang, “Design of dual-band filter based on OLRR and DSIR,” Journal of Electromagnetic Waves and Applications, vol. 24, pp. 209-218, 2010.
    [16] Weng, M. H. and H. W. Wu, “A novel triple-band bandpass filter using multilayer-based substrates for WiMAX,” in Proc. Eur.Microw. Conf., 2007.
    [17] S. G. Mo , Z. Y. Yu, and L. Zhang, “Design of triple-mode bandpass filter using improved hexagonal loop resonator,” Progress In Electromagnetics Research, vol. 96, pp. 117-125, 2009.
    [18] L. Zhang, Z. Y. Yu, and S. G. Mo, “Novel planar multi-mode bandpass filters with radial-line stubs,” Progress In Electromagnetics Research, vol. 101, pp. 33-42, 2010.
    [19] Y. C. Chiou, and J. T. Kuo, “Planar multiband bandpass filter with multimode stepped-impedance resonators,” Progress In Electromagnetics Research, vol. 114, pp. 129-144, 2011.
    [20] X. Guan, Z. Ma, and P. Cai, “A novel triple-band microstrip bandpass filter for wireless communication,” Microw. Opt. Technol. Lett., vol. 51, pp. 1568-1569, 2009.
    [21] J. P. Hu, G. H. Li, H. P. Hu, and H. Zang,” A new wideband triple-band filter using SIR,” Journal of Electromagnetic Waves and Applications, vol. 25, pp. 2287-2295, 2011.
    [22] X. Lai, C. H. Liang, H. Di, and B. Wu, “Design of tri-band filter based on stub loaded resonator and DGS resonator,’’ IEEE Microw. Wireless Compon. Lett., vol. 20, no.5, pp. 265-267, May 2010.
    [23] X. Y. Zhang, Q. Xue, and B. J. Hu, “Planar tri-band bandpass filter with compact size,’’ IEEE Microw. Wireless Compon. Lett., vol. 20, no.5, pp. 262-264, May 2010.
    [24] C. H. Lee, C.-I.G. Hsu, and H. K. Jhuang, “Design of a new tri-band microstrip BPF using combined quarter-wavelength SIRs,’’ IEEE Microw. Wireless Compon. Lett., vol.16, no. 11, pp. 594-596, Nov. 2006.
    [25] Q.-X. Chu, F.-C. Chen, Z.-H. Tu, and H. Wang, “A novel crossed resonator and its applications to bandpass filters,’’ IEEE Trans. Microw. Theory Tech., vol. 57, no. 7, pp. 1753-1759, July 2009.
    [26] W.-Y. Chen, M. H. Weng, and S. J. Chang, “A new tri-band bandpass filter based on stub-loaded step-impedance resonator,’’ IEEE Microw. Wireless Compon. Lett., vol. 22, no.4, pp. 179-181, Apr. 2012.
    [27] S.-C. Lin, “Microstrip dual/quad-band filters with coupled lines and quasi-lumped impedance inverters based on parallel-path transmission,’’ IEEE Trans. Microw. Theory Tech., vol. 59, no. 8, pp. 1937–1946, Aug. 2011.
    [28] H.-W. Wu, and R.-Y. Yang, “A new quad-band bandpass filter using asymmetric stepped impedance resonators,’’ IEEE Microw. Wirel. Compon. Lett., vol. 21, no. 4, pp. 203–205, April 2011.
    [29] J.-Y. Wu, and W.-H. Tu, “Design of quad-band bandpass filter with multiple transmission zeros,’’ Electron. Lett., vol.47, no. 8, pp. 502–503, April 2011.
    [30] J. Xu, C. Miao, L. Cui, Y.-X. Ji and W. Wu, “Compact high isolation quad-band bandpass filter using quad-mode resonator,’’ Electron. Lett., vol. 48, no. 1, pp. 28–30, Jan. 2012
    Chapter 2
    [1] D. M. Pozar, Microwave Engineering, Second Edition. John Wiley & Sons, Inc., 1998.
    [2] Edwards T. C. and Lancaster M. J., Foundations of Interconnect and Microstrip Design. Reading, John Wiley and Sons, 2000.
    [3] J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, John Wiley & Sons, Inc., 2001.
    [4] K. C. Gupta, R. Garg, I. J. Bahl, and P. Bhartia, Microstrip lines and slotlines, Second Edition, Artech House Inc., Norwood, MA, pp.91-92, 1996.
    [5] James, J. R. and Henderson, A., “High-frequency behaviour of microstrip open-circuit terminations,” IEE J. on Microwaves, Optics and Acoustics, vol. 3, pp. 205-218, Sep. 1979.
    [6] C. Veyres and V. F. Hanna,‘‘Extension of the Application of Conformal Mapping Techniques to Coplanar Lines with Finite Dimensions,’’ Int. J. Electron., vol. 48, no. 1,pp. 47—56, Jan. 1980.
    [7] R. E. Collin, Foundations for Microwave Engineering, 2nd ed., New York:McGraw-Hill, 1992, pp. 178-179.
    [8] R. B. Marks, ‘‘A Multiline Method of Network Analyzer Calibration,’’ IEEE Trans. Microwave Theory Tech., vol. 39, no. 7, pp. 1205-1215, July 1991.
    [9] http://probenotes.com/Notes/Filter/FilterSpec.html.
    [10] G. L. Matthaei, L. Young, E. M. T. Jone, Microwave Filters, Impedance-Maching Networks and Coupling Strustures, New York, McGraw Hill, 1964.
    [11] S. F. Chang, Y. H. Jeng, and J. L. Chen, Dual-band step-impedance bandpass filter for multimode wireless LANs, IEE Electron. Lett., no. 40, pp. 38-39, 2004.
    [12] S. F. Chang, J. L. Chen, and S. C. Chang, New dual-band bandpass filters with step-impedance resonators comb and hairpin structures, in Proc. Asia Pacific Microw. Conf., 2003, pp. 793–796.
    [13] S. Sun and L. Zhu, Coupling dispersion of parallel-coupled microstrip lines for dual-band filters with controllable fractional pass bandwidths, in IEEE MTT-S Int. Dig., 2005, pp. 2195-2198.
    [14] M. Makimoto and S. Yamashita, Microwave Resonators and Filters for Wireless Communication: Theory, Design and Application, Springer-Verlag, 2000.
    [15] M. H. Weng, C. H. Kao, and Y. C. Chang, “A compact dual-band bandpass filter with high band selectivity using cross-coupled asymmetric SIRs for WLANs,” Journal of Electromagnetic Waves and Applications, vol. 24, pp. 161-168, 2011.
    [16] X.-Y. Zhang, J.-X. Chen, Q. Xue, and S.-M. Li, “Dual-band bandpass filters using stub-loaded resonators, ’’IEEE Microw. Wireless Compon. Lett., vol. 17, no. 8, pp.583-585, Aug. 2007.
    Chapter 3
    [1] S. Wu and B. Razavi, “A 900-MHz/1.8-GHz CMOS receiver for dualband applications,” IEEE.J. Solid-State Circuits, vol. 33, no. 12, pp. 2178-2185, Dec. 1998.
    [2] J. X. Chen, T. Y. Yum, J. L. Li, and Q. Xue, “Dual-mode dual-band bandpass filter using stacked-loop structure,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 9, pp. 644-646, Sep. 2006.
    [3] S. Sun and L. Zhu, “Compact dual-band microstrip bandpass filter without external feeds,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 10, pp. 644-646, Oct. 2005.
    [4] M. H. Wang, H. W. Wu, and Y. K. Su, “Compact and low loss dual-band bandpass filter using pseudo-interdigital stepped impedance resonators for WLANS,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 3, pp. 187-189, Mar. 2007.
    [5] T. H. Huang, H. J. Chen, C. S. Chang, L. S. Chen, Y. H. Wang, and M. P. Houng, “A novel compact ring dual-mode filter with adjustable second-passband for dual-band applications,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 6, pp. 360–362, June. 2006.
    [6] X. Y. Zhang, J. X. Cheng, Q. Xue, and S. M. Li, “Dual-band bandpass filters using stub-loaded resonators,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 8, pp. 583-585, Aug. 2007.
    [7] P. Mondal and M. K. Mondal, “Design of dual-band bandpass filters using stub-loaded open-loop resonators,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 1, pp. 150-154, Jan. 2008.
    [8] X. Y. Zhang and Q. Xue, “Novel centrally loaded resonators and their applications to bandpass filters,” IEEE Trans. Microw. Theory Tech.,vol. 56, no. 4, pp. 913-921, April 2008.
    [9] J. T. Kuo, and C. Y. Tsai, “Periodic stepped-impedance ring resonator (PSIRR) bandpass filter with a miniaturized area and desirable upper stopband characteristics,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 3, pp. 1107-1112, Mar. 2006.
    [10] H. W. Yao, A. E. Abdelmonem, J. F. Liang, X. P. Liang, K. A. Zaki, and A. Martin, “Wide-band waveguide and ridge waveguide T-junctions for diplexer applications,” IEEE Trans. Microw. Theory Tech., vol. 41, no. 12, pp. 2166-2173, 1993.
    [11] B. Strassner and K. Chang, “Wide-band low-loss high-isolation microstrip periodic-stub diplexer for multiple-frequency applications,” IEEE Trans Microw. Theory and Tech., vol. 49, no. 10, pp. 1818-1820, 2001.
    [12] S. Srisathit, S. Patisang, R. Phromloungsri, S. Bunnjaweht, S. Kosulvit, M. Chongcheawchamnan, “High isolation and compact size microstrip hairpin diplexer,” Microw. Wireless Compon. Lett., vol. 15, no. 2, pp. 101-103,2005.
    [13] L. Harte, Introduction to Bluetooth: Technology, Market, Operation, Profiles, and Services. Fuquay Varina, NC: Althos, Jan. 2004.
    [14] Revision of Part 15 of the commission’s rules regarding ultra-wideband transmission Systems, Federal Communications Commission, ET-Docket 98-153, FCC02–48, 2002.
    [15] IEEE.15 Working Group for Wireless Personal Area Networks, Detailed DS-UWB simulation results, Tech. Rep., IEEE 802.15, 2004, pp. 802.
    [16] FCC, Revision of Part 15 of the Commission’s Rules Regarding Ultra-Wide-Band Transmission System, First Note and Order Federal Communication Commission, ET-Docket 98-153, 2002.
    [17] W. Menzel and P. Feil, “Ultra-wideband (UWB) filters with wlan notch,” in Proc. 36th EuMC, Sep. 2006, pp. 595-598.
    [18] K. Li, D. Kurita, and T. Matsui, “UWB bandpass filters with multi notched bands,” in Proc. 36th EuMC, Sep. 2006, pp. 591-594.
    [19] H. Shaman, and J. S. Hong “Ultra-wideband (UWB) bandpass filter with embedded band notch structures,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 7, pp. 193-195, Mar. 2007.
    [20] H. Shaman, and J. S. Hong, “Asymmetric parallel-coupled lines for notch implementation in UWB filters,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 7, pp. 516-518, July 2007.
    [21] N. Thomson and J. S. Hong, “Compact ultra-wideband microstrip / coplanar waveguide bandpass filter, IEEE Microw. Wireless Compon. Lett., no. 3, pp. 184-186, Mar. 2007.
    [22] J. T. Kuo, and C.Y. Tsai, “Periodic stepped-impedance ring resonator (PSIRR) bandpass filter with a miniaturized area and desirable upper stopband characteristics,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 3, pp. 1107-1112, Mar. 2006.
    [23] C. F. Chen, T. Y. Huang, C. P. Chou, and R. Beei Wu, “Microstrip diplexers design with common resonator sections for compact size, but high isolation,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 5, pp. 1945-1952, May 2006.
    [24] IE3D Simulator, Zeland Software, Inc., Fremont, CA, 1997.
    [25] X. D. Huang and C. H. Cheng, “A novel microstrip dual-mode bandpass filter with harmonic suppression,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 7 , pp. 404-406, July 2006.
    [26] L. Zhu and K. Wu, A joint field/circuit model of line-to-ring coupling structures and its application to the design of microstrip dual-mode filters and ring resonator circuits, Trans. Microw. Theory Tech., vol. 47, no. 10, 1938-1948, Oct. 1999.
    [27] M. H. Weng, S. K. Liu, Y. T. Liu, and C. Y. Hung, A novel ring wide bandpass filter by using orthogonal feed structure, Microwave Opt Technol Lett, vol. 8, pp. 2025-2027, 2008.
    [28] M. H. Weng, S. K. Liu, Y. T. Liu and C. Y. Hung, A low-loss ring UWB bandpass filter, Microwave Opt Technol Lett, vol. 9, pp. 2317 - 2319, 2008.
    [29] D. M. Pozar, Microwave Engineering, 2nd ed., Wiley, New York, 1998.
    [30] B. Schuppert, “Microstrip / Slotline Transitions: Modeling and Experimental Investigation,” IEEE Trans. Microw. Theory Tech., no. 8, pp. 1272-1282, Mar. 1988.
    [31] K. C. Gupta, R. Garg, and I. J. Bahi, Microstrip Lines and slotlines, Dedham, MA: Artech House, 1979.
    Chapter 4
    [1] S. F. Chang, Y. H. Jeng, and J. L. Chen, “Dual-band step-impedance bandpass filter for multimode wireless LANs,” Electron. Lett., vol. 40, pp. 38-39, Jan. 2004.
    [2] J. T. Kuo, T. H. Yeh, and C. C. Yeh, “Design of microstrip bandpass filter with a dual-passband response,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 4, pp. 1331-1337, Apr. 2005.
    [3] L. C. Tsai and C. W. Hsue, “Dual-band bandpass filters using equal length coupled-serial-shunted lines and z-transform techniques,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 4, pp. 1111-1117, April 2004.
    [4] C. F. Chen, T. Y. Huang, and R. B. Wu, Senior, “Design of dual- and triple-passband filters using alternately cascaded multiband resonators,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 9, pp.3550-3558, Sep. 2006.
    [5] D. F. Williams and S. E. Schwarz, “Design and performance of coplanar waveguide bandpass filters,” IEEE Trans. Microwave Theory Tech., vol. 31, pp. 558-566, July 1983.
    [6] A. Sanada, H. Takehara, T. Yamamoto and I. Awai, “λ/4 stepped-impedance resonator bandpass filters fabricated on coplanar waveguide,” in IEEE MTT-S Int. Microwave Symp. Dig., 2002, pp.385-388.
    [7] Y. K. Kuo, C. H. Wang, and C. H. Chen, “Novel reduced-size coplanar waveguide bandpass filters,” IEEE Microwave Wireless Compon. Lett., vol. 11, pp. 65-67, Feb. 2001.
    [8] S. S. Liao, H. K. Chen, Y. C. Chang, and K. T. Li, “New reduced-size coplanar-waveguide bandpass filters using the new folded open stub structure,” IEEE Microwave Wireless Compon. Lett., vol. 12, 2002, 476-478.
    [9] S. S. Liao, P. T. Sun, H. K. Chen, and X. Y. Liao, “Compact-size coplanar waveguide bandpass filter,” IEEE Microwave Wireless Compon. Lett., vol. 13, pp.241-243. June 2003.
    [10] Y. S. Lin, W. C. Ku, C. H. Wang, and C. H. Chen, “Wideband coplanar-waveguide bandpass filters with good stopband rejection,” IEEE Microwave Wireless Compon. Lett., vol. 14, pp. 422-424, Sep. 2004.
    [11] M. H. Weng, C. Y. Hung, C. Y. Huang, C. S. Ye and Y. K. Su, “A novel compact coplanar-waveguide bandpass filter with good stopband rejection,” Microwave & Optical Technology Letters, vol. 49, no. 2, pp. 369-371, Feb. 2007.
    [12] C. Y. Hung, C. S. Ye, R. Y. Yang, M. H. Weng, C. Y. Huang and Y. K. Su “A compact-size and high isolation dual-band coplanar-waveguide bandpass filter,” presented at 2007IEEE MTT-S Int. Microwave Symp. Dig., Honolulu, Hawaii, 2007.
    [13] C. F. Chen, T. Y. Huang, and R. B. Wu, “Design of dual- and triple-passband filters using alternately cascaded multiband resonators,’’ IEEE Trans. Microw. Theory Tech., vol. 54, no. 9, pp. 3550-3558, Sept. 2006.
    [14] M. H. Weng, and H. W. Wu, “A novel triple-band bandpass filter using multilayer-based substrates for WiMAX,” in Proc. Eur.Microw. Conf., 2007.
    [15] X. Lai, C. H. Liang, H. Di, and B. Wu, “Design of tri-Band filter based on stub loaded resonator and DGS resonator,’’ IEEE Microw. Wireless Compon. Lett., Vol. 20, 265-267, 2010.
    [16] X. Y. Zhang, Q. Xue, and B. J. Hu, “Planar tri-band bandpass filter with compact size,’’ IEEE Microw. Wireless Compon. Lett., vol. 20, no. 5, pp. 262-264, May 2010.
    [17] C. H. Lee, C.-I.G. Hsu, and H. K. Jhuang, “Design of a new tri-band microstrip BPF using combined quarter-wavelength SIRs,’’ IEEE Microw. Wireless Compon. Lett., vol.16, no.11, pp.594-596, Nov. 2006.
    [18] Q. -X. Chu, F.-C. Chen, Z.-H. Tu, and H. Wang, “A novel crossed resonator and its applications to bandpass filters,’’ IEEE Trans. Microw. Theory Tech., vol. 57, no. 7, pp. 1753-1759, July 2009.
    [19] W.-Y. Chen, M. H. Weng, and S. J. Chang, “A new tri-band bandpass filter based on stub-loaded step-impedance resonator,’’ IEEE Microw. Wireless Compon. Lett., vol. 22, no. 4, pp.179-181, Apr. 2012.
    [20] IE3D Version 9.0 Zeland Software Inc., Fremont, CA, 2000.
    [21] X.-Y. Zhang, , J. X. Chen, Q. Xue, and S. M. Li, “Dual-band bandpass filters using stub-loaded resonators,’’ IEEE Microw. Wireless Compon. Lett., vol. 17, no.8, pp. 583-585, Aug. 2007.
    [22] M. D. C. Velazquez-Ahumada, J. Martel-Villagr, F. Medina, and F. Mesa, “Application of stub loaded folded stepped impedance resonators to dual band filters,’’ Progress In Electromagnetics esearch, vol. 102, pp. 107-124, 2010.
    [23] D. Ma, , Z. Y. Xiao, L. Xiang, X. Wu, C. Huang, and X. Kou, “Compact dual-band bandpass filter using folded SIR with two stubs for WLAN,’’ Progress In Electromagnetics Research, vol. 117, 357-364, 2011.
    [24] Y. Wu, and Y. Liu, “A coupled-line band-stop filter with three-section transmission-line stubs and wide upper pass-band performance,’’Progress In Electromagnetics Research, vol. 119, 407-421, 2011.
    [25] A. R. H. Alhawari, A. Ismail, M. A. Mahdi, and R. S. A. Raja Abdullah, “Development of novel tunable dual-band negative index metamaterial using open stub-loaded stepped-impedance resonator,’’Progress In Electromagnetics Research B, vol. 35, 111-131, 2011.
    [26] L. Zhou, S. Liu, Y.-N. Guo, X.-K. Kong, and H. F. Zhang, “A high selectivity quadruple-mode BPF with two short-circuited stub-loaded SIRs,’’ Progress In Electromagnetics Research Letters, vol. 24, pp. 43-50, 2011.
    [27] H.-W. Deng, B. Liu, Y.-J. Zhao, X.-S. Zhang, and W. Chen, “High rejection broadband BPF with triple-mode stub-loaded resonator,’’Progress In Electromagnetics Research Letters, vol. 21, pp. 139-146, 2011.
    [28] H.-W. Deng, Y.-J. Zhao, L. Zhang, X.-S. Zhang, and W. Zhao, “Compact wideband bandpass filter with quadruple-mode stub-loaded resonator,’’Progress In Electromagnetics Research Letters, vol. 17, 125-132, 2010.
    [29] C. M. Tsai, S. Y. Lee, and C. C. Tsai, “Performance of a planar filter using a zero-degree feed structure,’’ IEEE Trans. Microw. Theory Tech., vol. 50, no. 4, pp. 2362-2367, July 2002.
    [30] J.-S. Hong and M. J. Lancaster, Microstrip Filter for RF/Mcrowave Applications, Wiley, New York, 2001.
    Chapter 5
    [1] M. Studniberg, and G. V. Eleftheriades, “A quad-band bandpass filter using negative-refractive-index transmission-line (NRI-TL) metamaterials,” in Proc. IEEE Antennas Propag. Soc. Int. Symp., 2007, pp. 4961–4964.
    [2] J. C. Liu, J. W. Wang, B. H. Zeng, and D. C. Chang, “CPW-fed dual mode double-square-ring resonators for quad-band filters,” IEEE Microw. Wireless Compon. Lett., vol. 20,no. 3, pp.142–144, Mar. 2010.
    [3] R.-Y. Yang, C.-Y. Hung, and J.-S. Lin, “Design and fabrication of a quad-band bandpass filter using multi-layered SIR structure,” Progress In Electromagnetics Research, vol. 114, 457-468, 2011.
    [4] C. C. Cheng, and C. F. Yang, “Develop quad-band (1.57/2.45/3.5/5.2 GHz) bandpass filters on the ceramic substrate,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 5, pp. 594–596, May 2010.
    [5] S. C. Lin, “Microstrip dual/quad-band filters with coupled lines and quasi-lumped impedance inverters based on parallel-path transmission,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 8, pp. 1937–1946, May 2011.
    [6] C.-F. Yang, Y.-C. Chen, C.-Y. Kung, J.-J. Lin and T.-P. Sun, “Design and fabrication of a compact quad-band bandpass filter using two different parallel positioned resonators,” Progress In Electromagnetics Research, vol. 115, pp. 159-172, 2011.
    [7] H. W. Wu and R.-Y. Yang, “A new quad-band bandpass filter using asymmetric stepped impedance resonator,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 4, pp. 203–205, Apr. 2011.
    [8] Zhang, X.-Y., J. X. Chen, Q. Xue, and S. M. Li, “Dual-band bandpass filters using stub-loaded resonators,’’ IEEE Microw. Wireless Compon. Lett., vol. 17, pp. 583-585, Aug. 2007.
    [9] J.-Y. Wu, and W.-H. Tu, “Design of quad-band bandpass filter with multiple transmission zeros,’’ Electron. Lett., vol. 47, no. 8, pp. 502–503, 2011.
    [10] J. Xu, C. Miao, L. Cui, Y.-X. Ji and W. Wu, “Compact high isolation quad-band bandpass filter using quad-mode resonator,’’ Electron. Lett., vol. 48, no.1, pp. 28–30, 2012.
    [11] M. D. C. Velazquez-Ahumada, J. Martel-Villagr, F. Medina, and F. Mesa, “Application of stub loaded folded stepped impedance resonators to dual band filters,’’ Progress In Electromagnetics research, vol. 102, pp. 107-124, 2010.
    [12] D. Ma, , Z. Y. Xiao, L. Xiang, X. Wu, C. Huang, and X. Kou, “Compact dual-band bandpass filter using folded SIR with two stubs for WLAN,’’ Progress In Electromagnetics Research, vol. 117, pp. 357-364, 2011.
    [13] Wu, Y. and Y. Liu, “A coupled-line band-stop filter with three-Section transmission-line stubs and wide upper pass-band performance,’’Progress In Electromagnetics Research, vol. 119, pp. 407-421, 2011.
    [14] A. R. H. Alhawari, , A. Ismail, M. A. Mahdi, and R. S. A. Raja Abdullah, “Development of novel tunable dual-band negative index metamaterial using Open stub-loaded stepped-impedance resonator,’’Progress In Electromagnetics Research B, vol. 35, pp. 111-131, 2011.
    [15] L. Zhou, , S. Liu, Y.-N. Guo, X.-K. Kong, and H. F. Zhang, “A high selectivity quadruple-mode BPF with two short-circuited stub-loaded SIRs,’’ Progress In Electromagnetics Research Letters, vol. 24, pp. 43-50, 2011.
    [16] H.-W. Deng, , B. Liu, Y.-J. Zhao, X.-S. Zhang, and W. Chen, “High rejection broadband BPF with triple-mode stub-loaded resonator,’’Progress In Electromagnetics Research Letters, vol. 21, pp. 139-146, 2011.
    [17] H.-W. Deng, Y.-J. Zhao, L. Zhang, X.-S. Zhang, and W. Zhao, “Compact wideband bandpass filter with quadruple-mode stub-loaded Resonator,’’Progress In Electromagnetics Research Letters, vol. 17, pp. 125-132, 2010.
    [18] C. M. Tsai, S. Y. Lee, and C. C. Tsai, “Performance of a planar filter using a zero-degree feed structure,’’ IEEE Trans. Microw. Theory Tech., vol. 50, no. 4, pp. 2362-2367, July 2002.
    [19] J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications. New York: Wiley, 2001.
    [20] IE3D Simulator Zeland Software, Inc., 2002.
    Chapter 6
    [1] K. T. Chan, C. Y. Chen, A. Chin, C. Hsieh, J. Liu, T. S. Duh, and W. J. Lin , “40-GHz Coplanar waveguide bandpass filters on silicon substrate,” IEEE Microw. Wireless Compon. Lett., vol. 12, no. 11, pp. 429-431, Nov. 2002.
    [2] K. T. Chan, Albert Chin, Y. D. Lin, C. Y. Chang, C. X. Zhu, M. F. Li, D. L. Kwong, S. McAlister, D. S. Duh, and W. J. Lin, “Integrated antennas on Si with over 100 GHz performance, fabricated using an optimized proton implantation process,” IEEE Microw. Wireless Compon. Lett., vol. 13, no. 11,pp. 487-489, Nov. 2003
    [3] Y. Wu, H. S. Gamble, B. M. Armstrong, V. F. Fusco, and J. A. C. Stewart, “SiO2 interface layer effects on microwave loss of high-resistivity CPW line,” IEEE Microw. Guided Wave Lett., vol. 9, no. 1, pp. 10-12, Jan. 1999.
    [4] H. Gamble, B. M. Armstrong, S. J. N. Mitchell, Y. Wu, V. F. Fusco, and J. A. C. Stewart, “Low-loss CPW lines on surface stabilized high resistivity silicon,” IEEE Microw. Guided Wave Lett., vol. 9, no. 10, pp. 395-397, Oct. 1999.
    [5] B. Wong, J. N. Burghartz, L. K. Natives, B. Rejaei, and M. van der Zwan, “Surface-passivated high resistivity silicon substrates for RFICs,” IEEE Electron Device Lett., vol. 25, no. 4, pp. 176-178, Apr. 2004.
    [6] J. A. Reynoso-Hernández, Raúl Rangel-Rojo, M. Aceves, I. Zaldivar, L. E. Sánchez, and M. Herrera, “Influence of the SRO as passivation layer on the microwave attenuation losses of the CPWs fabricated on HR-Si,” IEEE Microw. Guided Wave Lett., vol. 13, no. 12, pp. 508-510, Dec. 2003.
    [7] C. J. Chen, R.L. Wang, Y.K. Su, and T. J. H, “A nanocrystalline silicon surface-passivation layer on an HR-Si substrate for RFICs,” IEEE Electron Device Lett., vol. 32, no. 3, pp. 369-371, Nov. 2011.
    [8] M. Zegaoui, D. Ducatteau, N. Rolland, P.A. Rolland , “High-Performance Low-Leakage-Current AlN/GaN HEMTs Grown on Silicon Substrate,” IEEE Electron Device Lett, vol. 32, no. 7, pp. 874-876, July 2011.
    [9] C. H. Lai, A. Chin, B. F. Hung, C. F. Cheng, W. J. Yoo, M. F. Li, C. Zhu, S. P. McAlister, and D. L. Kwong, “A novel program-erasable High-k AlN–Si MIS Capacitor ,” IEEE Electron Device Lett, vol. 26, no. 3, pp. 148-150, Mar. 2005.
    [10] R. S. Naik, R. Reif, J. J. Lutsky, and C. G. Sodini, “Low-temperature deposition of highly textured aluminum nitride by direct current magnetron sputtering for applications in thin-film resonators,” J. Electrochem. Soc., vol. 146, no. 2, pp. 691-696, Feb. 1999.
    [11] X. H. Xu, H. S. Wu, C. J. Zhang, and Z. H. Jin, “Morphological properties of AlN piezoelectric thin films deposited by DC reactive magnetron sputtering,” Thin Solid Films, vol. 388, no. 1-2, pp. 62-67, June 2001.
    [12] D. Lederer and J. P. Raskin, “New substrate passivation method dedicated to HR SOI wafer fabrication with increased substrate resistivity,” IEEE Electron Device Lett., vol. 26, no. 11, pp. 805-807, Nov. 2005.
    [13] R. Y. Yang, Y. K. Su, and M. H. Weng, C. Y. Hung and H. W. Wu, “Characteristics of coplanar waveguide on lithium niobate crystals as a microwave substrate,” J. Appl. Phys., vol. 101, no. 1, pp. 014101 - 014101-5, Jan. 2007.
    [14] J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications. New York: John Wiley & Sons, 2001.
    [15] “IE3D Simulator,” Zeland Software, Inc., 1997.
    [16] S. S. Bedair and I. Wolff, “Fast, accurate and simple approximate analytic formulas for calculating the parameters of supported coplanar waveguides for MMIC's,” IEEE Trans. Microw. Theory Tech., vol. 40, no. 1, pp. 41-48, 1992.
    [17] T. C. Edwards, M. B. Steer, Foundations of Interconnect and Microstrip Design. John Wiley&Sons, Inc., 2000.
    [18] Doan, C. H., S. Emami, A. M. Niknejad, and R.W. Brodersen, “Millimeter-wave CMOS design,” IEEE Solid-State Circuits, Vol. 40, 144- 155, 2005.

    下載圖示 校內:2015-04-01公開
    校外:2015-04-01公開
    QR CODE