| 研究生: |
翁章譯 Weng, Zhang-Yi |
|---|---|
| 論文名稱: |
離散型捕食者與被捕食者模型之霍普夫分歧的存在性之研究 On the study of the Existence of Neimark-Sacker Hopf bifurcation for a discrete predator-prey model |
| 指導教授: |
王辰樹
Wang, Chern-Shuh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系應用數學碩博士班 Department of Mathematics |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 英文 |
| 論文頁數: | 24 |
| 中文關鍵詞: | 不變曲線 、混沌動態系統 、離散型捕食者與被捕食者模型 、霍普夫分歧 |
| 外文關鍵詞: | Neimark-Sacker Hopf bifurcation, chaotic dynamical system, invariant curve, discrete predator-prey model |
| 相關次數: | 點閱:101 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在這篇文章, 我們處理的是離散型捕食者與被捕食者模型。 主要是探討此模型是否具有混沌動態行為。 首先我們通過數值實驗取得分歧圖形用以推測參數α在3.2和3.3之間時, 有霍普夫分歧, 並由嚴格的數學證明得知確實當α=α﹡, α﹡落在3.2和3.3 之間發生了霍普夫分歧 。 進而揣測出此模型最後有可能會通往混沌動態系統。
This paper deals with the Nicholson-Bailey model which arises from the Ricker model (x, y)→(xe^[r(1-x)-αy], x[1-e^(-αy)]). The purpose of this paper is the study on the existence of the Neimark-Sacker Hopf bifurcation which is believed that the corresponding dynamic system contains a chaotic orbit. Based on the bifurcation diagram versus parameter α which is in (3.2, 3.3), we realize that a Neimark-Sacker Hopf bifurcation takes place at α which is in (3.2, 3.3). We hence investigate a rigorous proof of the existence of the Neimark-Sacker Hopf bifurcation, which routes the Ricker model to a chaotic system.
References
1. D. G. Aronson, M. A. Chory, G. R. Hall, and R. P. McGehee, Bifurcations from an Invariant Circle for Two-Parameter Families of Maps of the Plane: A Computer-Assisted Study, Commun. Math. Phys. 83, pp. 303-354, 1982.
2. J. R. Beddington, C. A. Free, J. H. Lawton, Dynamic complexity in predator-prey models framed in difference equations, Nature, vol. 255, pp. 59-60, 1975.
3. L. Edelstein-Keshet, Mathematical Models in Biology, 3rd ed., Random House/Birkhauser Mathematics Series, Random House, Inc., New York, 1988.
4. Meng Fan, Irakli Loladze, Yang Kuang and James J. ELSER, Dynamics of a stoichiometric discrete producer-grazer model, Journal of Difference Equations and Applications, vol 11, pp. 347-364, 2005.
5. Christos E. Frouzakis, Ioannis G. Kevrekidis, Bruce B. Peckham, A route to computational chaos revisited: noninvertibility and the breakup of an invariant circle, 2003.
6. Sze-Bi Hsu, Ming-Chia Li, Weishi Liu, Mikhail Malkin, Heteroclinic Foliation, Global Oscillations for the Nicholson-Bailey Model and Delay of Stability Loss, Discrete and Continuous Dynamical Systems, Vol. 9, Num. 6, pp. 1465-1492, 2003.
7. Tomasz Kapitaniak and Steven R. Bishop, The Illustrated Dictionary of Nonlinear Dynamics and Chaos, John Wiley, New York, 1999.
8. Yuri A. Kuznetsov, Elements of Applied Bifurcation Theory, 3rd ed, Springer-Verlag, New York, 2004.
9. A. J. Nicholson and V. A. Bailey, The balance of animal populations. Part I, Zool. Soc. (London), Porc. 3, pp. 551-598, 1935.
10. Edward Ott, Chaos in Dynamical Systems, Cambridge University Press, New York, 1993.
11. Curry, J., Yorke, J., A transition from Hopf bifurcation to chaos: computer experiments on maps in R^2. The structure of attractors in dynamical systems. Lecture Notes in Mathematics, Vol. 668, pp. 48-68. Berlin, Heidelberg, New York: Springer 1978.