簡易檢索 / 詳目顯示

研究生: 蕭仲程
Hsiao, Chung-Cheng
論文名稱: 分子動力學模擬研究奈米碳管之電子束輻照焊接
Molecular Dynamics Simulation Study of Carbon Nanotube Welding with Electron Beam Irradiation
指導教授: 翁政義
Weng, Cheng-I
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 94
中文關鍵詞: 奈米碳管電子束輻照分子動力學模擬
外文關鍵詞: electron beam irradiation, molecular dynamics simulation, carbon nanotube
相關次數: 點閱:114下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   交叉放置的單壁奈米碳管於穿透式電子顯微鏡(TEM)的電子束照射(E-beam irradiation)下,將形成一奈米級分子接面(molecular junctions),由兩根碳管所形成的接面,若一根是半導體性,另一根是金屬性,則可當成整流二極體使用,當碳管為多端異質接面,如”Y”或”T”形接面,則可作為電晶體。而該接面電性質完全依賴於接面處原子鍵結情況,如懸鍵、sp、sp2、sp3 混成等鍵結。但這些原子鍵結結構在實驗上是很難觀察到的,因此,本研究利用tight-binding(TB)勢能函數為原子間交互作用的分子動力學模擬進行接面結構的細部觀察,而在此我們選擇碳管螺旋性作為探討參數。而TB 勢能對於鍵結斷裂及生成行為有著良好的描述。在電子束照射模擬方面,我們安排一週期性增加原子動能方式來模擬電
    子撞擊碳原子的行為,這種動能安排的物理方式是基於散射理論所選用。模擬結果指出不論哪一種螺旋性碳管對在電子束照射下均能相融接,而在(5,5)-(5,5)碳管接面因為有最高sp2 及最低sp 混 成原子比例,所以顯現出最佳結構穩定性;反之,(5,5)-(9,0)碳管接面在穩定性表現為最差。在本研究中,我們成功觀察出碳管接面的形成,及分析接面的鍵結性質。最後,我們提出分子動力學的瓶頸及可能改進的方向,作為今後努力的方針。

    Crossing single-walled carbon nanotubes can be welded by electron beam irradiation in a transmission electron microscope to form molecular junctions. If a junction formed by two CNTs, one of which is semiconducting
    and the other of which is metallic, can act as a rectifying diode, while a multiterminal heterojunction, such as a “Y” or “T” junction, works as a transistor. The properties of these junctions completely depend on the
    bonding in the joint, such as dangling bond, sp-, sp2-, or sp3- hybridized. But determination of the bonding structure of CNT junctions is difficult to do experimentally. Therefore, we choose the chirality of CNT as parameter in
    this study, and perform molecular dynamics(MD) simulations of CNTs welding to study detailed information on the atomic structure of the junction. In the molecular dynamics simulation, the tight-binding(TB) potential which
    allows for the breaking and forming of chemical bonds was employed to describe the intermolecular forces between atoms. The electron beam irradiation is mimicked by periodically assigning a velocity to a PKA(primary knock-out atoms). The physical way of assigning of energies
    and momenta is based on scattering theories. Ths simulations indicate any types of CNT pair can be welded together in the merging process. But the chirality of CNTs influences the stability of the junction structure. The
    (5,5)-(5,5) pair junction shows the best stability because it has the most sp2 and the least sp hybridized atoms. By contrast, the (5,5)-(9,0) pair reveals the worst stability. So here we successfully observe the formation of CNT
    junction and analysis the bonding properties in the junctions. Finally, we point out bottlenecks of molecular dynamics simulation, and the state-of-the-art ways to overcome these bottlenecks in our future works.

    中文摘要...............................................................................................I 英文摘要............................................................................................. II 誌謝.................................................................................................... III 目錄.....................................................................................................IV 表目錄.............................................................................................. VII 圖目錄..............................................................................................VIII 符號說明............................................................................................XI 第1 章 緒論.......................................................................................... 1 1.1 前言................................................................................................ 1 1.2 研究動機與目的............................................................................ 3 1.3 分子動力學模擬電子束輻照焊接奈米碳管之文獻回顧............ 8 1.4 本文架構...................................................................................... 11 第2 章 分子動力學理論.................................................................... 12 2.1 物理模型...................................................................................... 12 2.2 勢能函數...................................................................................... 16 2.3 電子束輻照焊接模擬流程圖...................................................... 25 第3 章 分子動力學數值模擬方法.................................................... 27 3.1 模擬參數與無因次化.................................................................. 27 3.2 初始條件設定.............................................................................. 31 3.3 運動方程式數值解...................................................................... 34 3.3.1 Verlet 演算法........................................................................... 35 3.3.2 leapfrog 演算法.......................................................................... 36 3.3.3 velocity-Verlet 演算法................................................................ 36 3.3.4 Gear predictor-corrector 演算法.................................. 37 3.4 截斷半徑法......................................................... 41 3.4.1 Verlet 表列法.................................................... 42 3.4.2 cell link 表列法................................................. 43 3.4.3 Verlet 表列法結合cell link 表列法................................ 43 3.5 電子束輻照模擬..................................................... 47 第4 章 模擬結果分析與討論...............................................52 4.1 模擬結果各物理量的統計方法......................................... 53 4.1.1 照射層溫度統計................................................... 54 4.1.2 鍵長分佈統計..................................................... 55 4.1.3 spn 混成鍵結原子判別............................................. 56 4.2 熱退火對於鍵長分佈變化之觀察....................................... 60 4.3 熱退火對於各種螺旋性碳管接面之影響................................. 69 第5 章 結論與建議...................................................... 86 5.1 結論............................................................... 86 5.2 建議與未來展望..................................................... 88 參考文獻............................................................... 89 自述................................................................... 94

    【1】S. Iijima, “Helical microtubules of graphitic carbon,” Nature, Vol. 354,
    No. 6348, pp. 56-58(1991).
    【2】M. S. Dresselhaus, G. Dresselhaus et al., Science of Fullerenes and
    Nanotubes, Academic Press, New York, 1996.
    【3】R. Saito, M. Fujita et al., “Electronic structure of chiral graphene
    tubules,” Appl. Phys. Lett., Vol. 60, Iss. 18, pp. 2204-2206(1992).
    【4】J. W. G. Wildöer, L. C. Venema et al., “Electronic structure of
    atomically resolved carbon nanotubes,” Nature, Vol. 391, No. 6662, pp.
    59-62(1998).
    【5】T. W. Odom, J. L. Huang et al., “Atomic structure and electronic
    properties of single-walled carbon nanotubes”, Nature, Vol. 391, No.
    6662, pp. 62-64(1998).
    【6】S. Frank, P. Poncharal et al., “Carbon Nanotube Quantum Resistors,”
    Nature, Vol. 280, Iss. 5370, pp. 1744-1746(1998).
    【7】H. W. C. Postma, M. de Jonge et al., “Electrical transport through
    carbon nanotube junctions created by mechanical manipulation,” Phys.
    Rev. B, Vol. 62, No. 16, pp. R10653-R10656(2000).
    【8】K. Metenier, S. Bonnamy et al., “Coalescence of sigle-walled carbon
    nanotubes and formation of multi-walled carbon nanotubes under
    high-temperature treatments,” Carbon, Vol. 40, Iss. 10, pp.
    1765-1773(2002).
    90
    【9】P. W. Chiu, G.S. Duesberg et al., “Interconnection of carbon nanotubes
    by chemical functionalization,” Appl. Phys. Lett., Vol. 80, No. 20, pp.
    3811-3813(2002).
    【10】J. H. Irving and J. G. Kirkwood, “The Statistical Mechanical Theory of
    Transport Properties. IV. The Equations of Hydrodynamics,” J. Chem.
    Phys., Vol. 18, pp. 817-823(1950).
    【11】H. Wakabayashi, Y. Shimazu et al., “Numerical Simulation on Melting
    Behavior of an Atomic Layer Irradiated by Thermal Radiation,” 日本
    機械協會論文集(B 編), Vol. 59, No. 563(1993-7).
    【12】F. Banhart, “Irradiation effects in carbon nanostructures,” Rep. Prog.
    Phys., Vol. 62, pp. 1181-1221(1999).
    【13】P. M. Ajayan, V. Ravikumar et al., “Surface Reconstructions and
    Dimensional Changes in Single-Walled Carbon Nanotubes,” Phys. Rev.
    Lett., Vol. 81, No. 7, pp. 1437-1440(1998).
    【14】M. Terrones, F. Banhart et al., “Molecular Junctions by Joining
    Single-Walled Carbon Nanotubes,” Phys. Rev. Lett., Vol. 89, No. 7, pp.
    075505(2002).
    【15】A. V. Krasheninnikov, K. Nordlund et al., “Making junctions between
    carbon nanotubes using an ion beam,” Nucl. Instrum. Meth. B, Vol.
    202, pp. 224-229(2003).
    【16】M. Menon, A. N. Andriotis et al., “Carbon Nanotube “T Junctions”:
    Formation Pathways and Conductivity,” Phys. Rev. Lett., Vol. 91, No.
    14, pp. 145501(2003).
    91
    【17】J. C. Charlier, M. Terrones et al., “Experimental Observation and
    Quantum Modeling of Electron Irradiation on Single-Wall Carbon
    Nanotubes,” IEEE Trans. Nanotechnology, Vol. 2, No. 4, pp.
    349-354(2003).
    【18】M. P. Allen and D. J. Tildesley, Computer Simulation in Chemical
    Physics, Kluwer Academic Publishers, London, 1992.
    【19】M. Meyer et al., Computer Simulation in Material Science, Kluwer
    Academic Publishers, London, 1991.
    【20】S. Erkoc, Annual Reviews of Computational IX, World Scientific
    Publishing Company, Singapore, pp. 1-103, 2001.
    【21】H. Rafii-Tabar, “Modeling the nano-scale phenomena in condensed
    matter physics via computer-based numerical simulations,” Phys. Rep.,
    Vol. 325, pp. 239-310(2000).
    【22】R. Smith et al., Atomic & Ion Collisions in Solids and at Surfaces,
    Cambridge University Press, London, 1997.
    【23】G. C. Maitland, M. Rigby et al., Intermolecular Forces, Oxford
    University Press, London, 1987.
    【24】P. L. Huyskens et al., Intermolecular Forces, Springer-Verlag, Berlin,
    1991.
    【25】M. Rigby, E. B. Smith et al., The Forces between Molecules, Oxford
    University Press, London, 1986.
    【26】J. C. Slater and G. F. Koster, “Simplified LCAO method for periodic
    potential problem,” Phys. Rev., Vol. 94, No. 6, pp. 1498-1524(1954).
    【27】C. Kittel, Introduction to Solid State Physics, John Wiley & Sons, New
    York, 1996.
    92
    【28】劉東昇, 化學量子力學,徐氏基金會出版,台北,1992。
    【29】江元生, 結構化學,五南圖書出版,台北,1998。
    【30】L. Colombo, “A source code for tight-binding molecular dynamics
    simulations,” Comp. Mater. Sci., Vol. 12, pp. 278-287(1998).
    【31】J. Z. H. Zhang, Theory and Application of Quantum Molecular
    Dynamics, World Scientific Publishing Company, Singapore, 1999.
    【32】江逢霖, 量子化學原理,復旦大學出版社,上海,1990。
    【33】C. H. Xu, C. Z. Wang et al., “A transferable tight-binding potential for
    carbon,” J. Phys.: Condens. Mat., Vol. 4, pp. 6047-6054(1992).
    【34】I. Kwon, R. Biswas et al., “Transferable tight-binding models for
    silicon,” Phys. Rev. B, Vol. 49, No. 11, pp. 7242-7250(1994).
    【35】R. P. Gupta, “Lattice relaxation at a metal surface,” Phys. Rev. B, Vol.
    23, No. 12, pp. 6265-6270(1981).
    【36】P. Jung, Landoldt-Börnstein, New Series III/25 ed H Ullmaier,
    Springer, Berlin, pp. 1-87, 1991.
    【37】J. M. Haile, Molecular Dynamics Simulation, John Wiley & Sons,
    New York, 1997.
    【38 】D. C. Rapaport, The Art of Molecular Dynamics Simulation,
    Cambridge University Press, London, 1997.
    【39】J. M. Goodfellow et al., Molecular Dynamics, CRC Press, Boston,
    1990.
    【40】M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids,
    Oxford Science, London, 1991.
    【41】D. Frenkel and B. Smit, Understanding Molecular Simulation,
    Academic Press, San Diego, 1996.
    【42】D. W. Heermann, Computer Simulation Method, Springer-Verlag,
    Berlin, 1990.
    【43】M. Zaiser and F. Banhart, “Radiation-Induced Transformation of
    Graphite to Diamond,” Phys. Rev. Lett., Vol. 79, No. 19, pp.
    3680-3683(1997).
    【44】S. Kotake and S. Wakuri, “Molecular dynamics study of heat
    conduction in solid materials,” JSME Int. J. Series B, Vol. 37, No. 1,
    pp. 103-108(1994).

    下載圖示 校內:2006-07-19公開
    校外:2006-07-19公開
    QR CODE