| 研究生: |
目崎翔太 Mesaki, Shota |
|---|---|
| 論文名稱: |
錫陽極泥中有價金屬之資源再生研究 Recovery of Valuable Metals from Tin Anode Slime |
| 指導教授: |
陳偉聖
Chen, Wei-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 錫陽極泥 、濕法冶金 、酸溶浸漬 、溶媒萃取 、資源再生 |
| 外文關鍵詞: | Tin anode slime, Tributyl phosphate, Solvent extraction, Recovery, Antimony, Bismuth |
| 相關次數: | 點閱:85 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究針對錫陽極泥粉末進行資源再生研究,採用濕法冶金技術,將錫陽極泥中錫、銻、鉍、銅、銀等金屬資源進行再生,研究流程主要分為特性分析、酸溶浸漬、分離純化、金屬產物析出等四部分,並使最終產物能回用到產業端。
第一部分為錫陽極泥粉末之特性分析,藉由組成元素分析、表面特性分析以及晶相分析等方法,得到錫陽極泥之基本化學特性後,做為後續資源化方法選擇之依據,並訂定整體實驗流程。
第二部分為酸溶浸漬,本研究利用鹽酸及過氧化氫,探討藥劑濃度、氧化劑添加量、液固比及溫度等參數後,使錫陽極泥中錫、銻、鉍、銅及銀之溶出率分別達到85.32%、96.93%、97.63%、99.81%、0.89%,並使用硝酸針對浸漬殘渣中的銀資源進行浸漬,溶出率達到99.80%。
第三部分為金屬分離純化,針對錫、銻、鉍、銅四種浸漬液中的離子進行分離。以磷酸三丁酯(Tributyl phosphate)作為溶媒萃取法之萃取劑,藉由探討環境鹽酸濃度、萃取劑濃度、油水比與震盪時間等參數,得到最佳萃取條件,將錫、銻離子萃取至油相,並使鉍、銅離子殘留在水相中,完成第一階段分離。接著藉由鹽酸與硝酸兩種反萃劑,分別將油相中的銻與錫反萃,完成銻、錫兩金屬之分離;留在水相中的鉍、銅離子則以選擇性化學沉澱法,藉由調整酸鹼值使鉍先行沉澱,形成氯氧化鉍固體,再經由過濾,與含有銅離子之溶液完成分離。
第四部份為金屬產物析出研究,將錫、銻、銅、銀離子透過添加氫氧化鈉與氯化鈉進行沉澱,得到錫、銻、銅之氫氧化物及氧化銀固體。接著以煅燒法與還原法得到氧化錫、氧化銻、氧化銅與金屬銀;氯氧化鉍則以氫氧化鈉進行反應後,得到氧化鉍。最終針對金屬產品進行化學分析後,純度皆為98%以上。
Tin anode slime is a by-product of tin electrolytic refining industry, and this study investigated a hydrometallurgical way to recover Sn, Sb, Bi, Cu, and Ag from tin anode slime. The study was divided into three parts: leaching, separation, and recovery. In the first part, Sn, Sb, Bi, and Cu were leached by hydrochloric acid, and Ag in the residue was leached by nitric acid. In the separation part, TBP was used as the extractant of solvent extraction. Sn and Sb were extracted into the organic phase and separated by different stripping agents. Bi and Cu ions remained in the aqueous phase were separated by the selective precipitation method. In the recovery part, with the chemical precipitation process and calcination, the final products are SnO2, Sb2O3, Bi2O3, CuO, and Ag, and all the purity are over 98%. The recovery rate of Sn, Sb, Bi, Cu, and Ag are 80.76%, 74.75%, 94.76%, 97.39%, and 98.1%.
[1] 伊藤卓爾。“黄銅から生成される金属泥”,工業科学雑誌,59(10),1100-1104,1956。
[2] Yasushi Watanabe. “To Secure the Supply of Rare Metals.”, Journal of the Japan Society for Precision Engineering, 74(1), 25-27, 2008.
[3] Sakichi Goro. “Recent trends in electrorefining and winning of base metals.”, Denki Kagaku oyobi Kogyo Butsuri Kagaku, 39(8), 671-676, 1971.
[4] Shunso Ishihara. “On bismuth resources of Japan and world.”, Resource Geology, 58(3), 131-138, 2008.
[5] Peter P. Murmu, John Kennedy, Sidharth Suman, Shen V. Chong, Jerome Leveneur, James Storey, Sergey Rubanov, Ganpati Ramanath. “Multifold improvement of thermoelectric power factor by tuning bismuth and antimony in nanostructured n-type bismuth antimony telluride thin films.” Materials & Design, 163, Article 107549, 2019.
[6] Mingming Si, Jianwei Hao, Lishi Xu, Jianxin Du. “Analysis of Nano-Sb2O3 in Flame Retardancy Applications.
[7] Lihua Liu. “Study on preparation and surface modification of antimony trioxide.”, Chemical Technology Market, 33(11), 24-26, 2010.
[8] U.S. Geological Survey. “Mineral Commodity Summaries 2021.”, 2021.
[9] Toru H. Okabe, Katsuhiro Nose. “Medium and Long-term Prospects of Material Flow for Rare-metal Resources.”, Material Cycles and Waste Management Research, 22(6), 403-411, 2011.
[10] Toru H. Okabe. “Recycling Technologies of Rare Metals”, Journal of the Japan Institute of Metals and Materials, 75(11), 601, 2011.
[11] 程晉陽,馬文軍。“新冠肺炎疫情導致全球範圍內有色礦山停產減產”,中國有色金屬,8,38-40,2020。
[12] Tokuji Murata. “Recycling of Rare Metals.”, Waste Management Research, 4(4), 315-325, 1993.
[13] R. Ranjbar, M. Naderi, H. Omidvar, Gh. Amoabediny. “Gold recovery from copper anode slime by means of magnetite nanoparticles (MNPs)”, Hydrometallurgy, 143, 54-59, 2014.
[14] L. Xiao, Y.L. Wang, Y. Yu, G.Y. Fu, P.W. Han, Z.H.I. Sun, S.F. Ye. “An environmentally friendly process to selectively recover silver from copper anode slime”, Journal of Cleaner Production, 187, 708-716, 2018.
[15] Yasin Kilic, Guldem Kartal, Servet Timur. “An investigation of copper and selenium recovery from copper anode slimes”, International Journal of Mineral Processing, 124, 75-82, 2013.
[16] Takuji Ito. “Metal slimes formed from brass anode during electrolysis in H2SO4-CuSO¬4 electrolyte.”, 59(10), 1100-1104, 1956.
[17] Guang You Jiang, Xiang Hai Luo, Jiu Hua Pan, Xiao Lan Wei. “The technological practice of separating tin and antimony in crude tin with high antimony via vacuum distillation.”, Nonferrous Metals Science and Engineering, 2(5), 41-44, 2011.
[18] 斎藤英臣,猪刈正利。“低品位アノードの錫電解操業”,日本鉱業会誌,100,378-381,1984。
[19] Jiu Fa Yin, Qi Wang Zhang, Min Zhang, Hong Bo Lu. “Experimental Research on Sulfide Volatilization Process of Tin Antimony Separation in Tin Anode Slime.”, Mining and Metallurgy, 21(4), 58-62, 2012.
[20] Hong Bo Lu, Jiu Fa Yin, Qi Wang Zhang, Min Zhang. “Thermodynamics of Separation Stibium from Tin Anode Slime by Sulfidation Roasting.”, Chinese Journal of Rare Metals, 37(5), 845-850, 2013.
[21] Zi Jian Su, Yuan Bo Zhang, Bing Bing Liu, Man Man Lu, Guang hui Li, Tao Jiang. “Extraction and Separation of Tin from Tin-Bearing Secondary Resources: A Review.”, JOM, 69(11), 2364-2372, 2017.
[22] Wei Li, Wei Zhong Guo, Ke Qing Qiu. “Vacuum Carbothemal Reduction for Treating Tin Anode Slime.”, JOM, 65(11), 1608-1614, 2013.
[23] Michael E. Wieser et al. “Atomic weights of the elements 2011(IUPAC Technical Report), Pure Appl. Chem., 85(5), 1047-1078, 2013.
[24] William M. Haynes. “CRC Handbook of Chemistry and Physics, CRC Press, U.S., 14-17, 2016.
[25] James D. Muhly. “Sources of Tin and the Beginnings of Bronze Metallurgy.” American Journal of Archaeology, 89(2), 275-291, 1985.
[26] Guang Zeng, Stuart McDonald, Kazuhiro Nogita. “Development of high-temperature solders: Review.”, Microelectronics Reliability, 52, 1306-1322, 2012.
[27] U.S. Geological Survey. “Mineral Commodity Summaries 2020.”, 2020.
[28] U.S. Geological Survey. “Mineral Commodity Summaries 2019.”, 2019.
[29] U.S. Geological Survey. “Mineral Commodity Summaries 2018.”, 2018.
[30] 張富。中國錫工業發展思路,中國有色金屬,13,38-39,2013。
[31] Jia Da Wu. “Antimony vein deposits of China.”, Ore Geology Reviews, 8, 213-232, 1993.
[32] A.D. Hardy, R.I. Walton, R. Vaishnav, L.A. Myers, M.R. Power, D. Pirrie. “Egyptian Eye Cosmetics (“Kohls”): Past and Present.”, Physical Techniques in th Study of Art, Archaeology and Cultural Heritage, 1, 173-203, 2006.
[33] Iizuka Yoshiyuki. “Chemical analysis of a bronze jar with four handles and its interpretation.”, Bulletin of the Kyushu University Museum, 18, 9-13, 2021.
[34] Shunso Ishihara, Tetsuji Ohno. “Present status of antimony mineral resource of this world.”, Shigen-Chishitsu, 62(1), 91-97, 2012.
[35] Ram Mohan. “Green bismuth”, Nature Chemistry, 2, 336, 2010.
[36] Otto Rohr. “Bismuth – the new ecologically green metal for modern lubricating engineering.”, Industrial Lubrication and Tribology, 54(4), 153-164, 2002.
[37] Ken-ichi Sato. “Development of bismuth-based high temperature superconducting wires and their application.”, Oyo Buturi, 66(4), 356-359, 1997.
[38] Amrita Verma, J.W. Evans. “Measurements of the Electrical Conductivity of Wood’s Alloy and Other Low Melting Point Alloys.”, Metallurgical and Materials Transactions B, 25(6), 937-939, 1994.
[39] Zeng-Qian Hou, Xiao-Fei Pan, Zhi-Ming Yang, Xiao-Ming Qu. “Porphyry Cu-(Mo-Au) deposits no related to oceanic-slab subduction: Examples from Chinese porphyry deposits in continental settings.”, Geoscience, 21(2), 332-351, 2007.
[40] 南條道夫。“都市鉱山開発-包括的資源観によるリサイクルシステムの位置付け”,東北大學選鑛製錬研究所彙報,43(2),239-251,1988。
[41] Hiroyuki Takahashi, Nobuyuki Inoue, Yuji Komori, Masakazu Konishi, Taichi Mizue. “Medal Production Utilizing Urban Mine Collection Metal.”, Journal of the Japan Society of Precision Engineering, 85(1), 19-22, 2019.
[42] Tomomi Hata. “Silver plating applications and technology trends.”, Journal of The Surface Finishing Society of Japan, 70(9), 441-445, 2019.
[43] R. Moreno Garcia. “The Recovery of Silver from Photographic Film: A Study of the Leaching Reaction with Cyanide Solution for Industrial Use.”, Hydrometallurgy, 16, 395-400, 1986.
[44] U.-C. Hipler, P. Elsner. “Biofunctional Textiles and the Skin.”, Karger, Dermatol. Basel, 17-34, 2006.
[45] Chiranjib Kumar Gupta. “Chemical Metallurgy: Principles and Practice.”, Wiley-VCH, Germany, 1-4, 2003.
[46] A. Tuncuk, V. Stazi, A. Akcil, E.Y. Yazici, H.Deveci. “Aqueous metal recovery techniques from e-scrap: Hydrometallurgy in recycling.”, Minerals Engineering, 25, 28-37, 2012.
[47] Naoto Takeno. “Atlas of Eh-pH diagrams – Intercomparison of thermodynamic databases.”, Geological Survey of Japan, 419, 2005.
[48] Douglas S. Flett. “Solvent extraction in hydrometallurgy: the role of organophosphorus extractants.”, Journal of Organometallic Chemistry, 690(10), 2426-2438, 2005.
[49] B. N. Kokare, A. M. Mandhare, M. A. Anudes. “Liquid – Liquid Extraction of Cerium (IV) from Salicylate Media using N-7V-Octylaniline in Xylene as an Extractant.”, J. Chil. Chem. Soc, 55(4), 431-435, 2010.
[50] A. Boualia, A. Mellah, A. Silem. “The Effect of Raw and Sulfonated Kerosene-type Diluent on the Solvent Extraction of Uranium and Co-Extractable Impurities from Solutions. Part1. Uranyl Nitrate Solution.”, Hydrometallurgy, 24, 1-9, 1990.
[51] Junwei Han, Zhenyu Ou, Wei Liu, Wenqing Qin. “Pretreatment of tin anode slime using alkaline pressure oxidative leaching”, Separation and Purification Technology, 174, 389-395, 2017.
[52] Weifeng Liu, Tianzu Yang, Duchao Zhang, Lin Chen, Younian Liu. “Pretreatment of copper anode slime with alkaline pressure oxidative leaching.”, International Journal of Mineral Processing, 128, 48-54, 2014.
[53] Sumiko Sanuki, Norio Minami, Koichi Arai, Toshio Izaki, Hiroshi Majima. “Oxidative Leaching Behavior of Copper Anode Slime in a Nitric Acid Solution Containing Sodium Chloride.”, J. Japan Inst. Metals, 54(4), 442-447, 1990.
[54] Wei Dong Xing, Man Seung Lee. “Development of a hydrometallurgical process for the recovery of gold and silver powders from anode slime containing copper, nickel, tin, and zinc.”, Gold Bulletin, 52, 69-77, 2019.
[55] Sunita V. Bandekar, P. M. Dhadke. “Separation of tin (IV) with 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester (PC-88A).”, Talanta, 46(5), 1181-1186, 1998.
[56] S. G. Sarkar, P. M. Dhadke. “Separation of antimony (III) and bismuth (III) with bis(2,4,4-trimethylpentyl) monothiol phosphonic acid (Cyanex302).”, Separation and Purification Technology, 15(2), 131-138, 1999.
[57] Jae Woo Ahn, Jae Chun Lee. “Separation of Sn, Bi, As, Cu, PB and Zn from Hydrochloric Acid Solution by Solvent Extraction Process Using TBP (tri-n-butyl phosphate) as an Extractant.”, Materials Transactions, 52(12), 2228-2232, 2011.
[58] J. N. Iyer, P. M. Dhadke. “Solvent extraction and separation studies of antimony (III) and bismuth (III) by using Cyaneex-925.”, Indian Journal of Chemical Technology, 10, 665-660, 2003.
[59] Anirudha D. Barve, Ganesh S. Desai, Vijay M. Shinde. “Extraction and Separation Studies of Bismuth (III) and Antimony (III) with Tris(2-ethylhexyl) phosphate.”, Bulletin of the Chemical Society of Japan, 66(4), 1079-1083, 1993.
[60] Wei Liu, Kunhong Gu, Junwei Han, Zhenyu Ou, Dixiu Wu, Deqiang Zhao, Wenqing Qin. “Innovative methodology for comprehensive use of tin anode slime: Preparation of CaSnO3.”, Minerals Engineering, 143, Article. 105945, 2019.
[61] Junwei Han, Zhenyu Ou, Wei Liu, Fen Jiao, Wenqing Qin. “Recovery of antimony and bismuth from tin anode slime after soda roasting-alkaline leaching.”, Separation and Purification Technology, 242, Article 116789, 2020.
[62] Yen-Jung Chen. “Circulation of valuable materials from Waste Crystalline-silicon Photovoltaic modules.”, Master’s thesis, National Cheng Kung University, 2020.
[63] Di Zhang, Qinggui Xiao, Bingzhu Zhang, Yongquan Xu, Hongbin Xu, Yi Zhang. “Determination and correlation of solubility of bismuth oxychloride in hydrochloric acid solution.”, CIESC Journal, 65(6), 15-17, 2001.
[64] Tae Kyung Ha, Bok Hyun Kwon, Kye Sun Park, Debasish Mohapatra. “Selective leaching and recovery of bismuth as Bi2O3 from copper smelter converter dust.”, Separation and Purification Technology, 142, 116-122, 2015.
[65] Hong Bo Lu. “Separation of antimony from tin anode slime by sulfidation roasting.”, The Chinese Journal of Nonferrous Metals, 25(11), 3202-3208, 2015.
[66] Toshio Suganuma, Masao Kuwabara. “Tin Smelter at Ikuno Plant.”, Journal of the Mining and Metallurgical Institute of Japan, 97, 774-775, 1981.
[67] 張增倫。“焊錫陽極泥濕法處理,稀有金屬與硬質合金”,S1,299-302,1993。
[68] 杜杰,陳全福。“某廠電解錫陽極泥錫、銻分離試驗研究”,南方國土資源,11,101-102,2004。
[69] 蔡水洪,張平,黃振華。“溶劑萃取法分離鉍、銻、錫”,濕法冶金,1,20-26,1992。
[70] Zhi Jian Wang, Feng Hua Ding, Jing Zhan, Chuan Fu Zhang. “Solvent extraction mechanism and precipitation stripping of bismuth (III) in hydrochloric acid medium by tributyl phosphate.”, Journal of Central South University, 23, 3085-3091, 2016.
[71] Zong Cheng Li, Tie Zhu Bao, Yu Xing Shang, Yi Gui Li. “Determination of the Thermodynamic Equilibrium Constant of the Extraction System HNO3-Tributyl Phosphate (TBP)-n-C7H16.”, Fluid Phase Equilibria, 46, 281-293, 1989.
[72] Man-Seung Lee, Jong-Gwan Ahn, Jae-Woo Ahn. “Recovery of copper, tin and lead from the spent nitric etching solutions of printed circuit board and regeneration of the etching solution”, Hydrometallurgy, 70, 23-29, 2003.
[73] 木羽敏泰。“T B P (Tributyl Phosphate)”,分析化學,6(9), 597-603,1957。
[74] Maurice C. Fuerstenau, Guoxin Wang. “Selective separation of tin from a chloride leach solution.”, Hydrometallurgy, 46, 229-234, 1997.
[75] Tadaaki Mizoguchi, Tadashi Sobukawa, Taijiro Okabe. “Recovery of Bismuth by Precipitation from Mixed Solution of Bismuth Sulfate, Iron Sulfate and Sulfuric Acid.”, 74(1), 17-21, 1971.
[76] J. Watson. “The tin oxide gas sensor and its applications.”, Sensors and Actuators, 5, 29-42, 1984.
[77] Takashi Oyabu, Shigeki Hirobayashi, Haruhiko Kimura. “Multiple tin-oxide gas sensing system to monitor the indoor of the aged of solitary living.”, T. IEE Japan, 117(6), 314-320, 1997.
[78] Komandur V. R. Chary, Guggilla Vidya Sagar, Dhachapally Naresh, Kottapalli Kalyana Seela, Bojja Sridhar. “Characterization and Reactivity of Copper Oxide Catalysts Supported on TiO2-ZeO2.”, J. Phys. Chem. B, 109(19), 9437-9444, 2005.
[79] Yasumasa Yamazaki, Shoji Ozawa, Yoshihiro Kojima, Hitoki Matsuda. “Decomposition Behavior of Flame Retardant Plastics Containg Brominated Flame Retardant and Trioxide Antimony.”, Journal of the Japan Society of Waste Management Experts, 16(1), 35-43, 2005.
[80] Toru Matsushita, Iwao Yamai. “Effects of Oxide Additives on Sintering of Sb2O3-Doped SnO2 Ceramics.”, Journal of the Ceramic Association, 80, 305-312, 1972.
校內:2026-08-16公開