| 研究生: |
王凱正 Wang, Kai-Cheng |
|---|---|
| 論文名稱: |
流體聚焦微管道之流場及出口分流率控制與微粒分離之研究 A Study of Hydrodynamic Focusing Micro-Channel Flow and the Control of its Flow Rate Distribution for Micro Particle Separation |
| 指導教授: |
李定智
Lee, Denz |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 微流體 、微粒分離 |
| 外文關鍵詞: | separation, microfluidic |
| 相關次數: | 點閱:118 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來微機電系統(Micro Electro Mechanical System, MEMS)技術迅速發展,並引發了微全分析系統(Micro Total Analysis System, μ-TAS)的研究,此系統具有體積小、檢測只需少量樣本、反應時間快等優點,再結合微製程技術便可達到減少成本的效果,且目前已有細胞研究、細胞分離、藥物檢測等多方面應用。
本研究目的在於分離多尺度之微粒,藉由數值計算建構本研究管道的模擬系統,並利用數值模擬結果與流阻理論作管道最佳化設計與評估。
實驗部份,本研究利用微流體力聚焦法與非對稱流阻設計為粒子分離主要機制,並且探討擠壓段中的流量分布以更精確預估微粒出口位置。微管道製作方式是以塗佈感光性光阻,以微影蝕刻的方式在矽晶圓轉移圖案,再利用polydimethylsiloxane(PDMS)翻模圖形而後接合於玻璃片上,成為本研究的微流體晶片系統。
由實驗結果與數值模擬成功交互比對驗證,本研究的微流體晶片可以使2 μm、6 μm及10 μm粒徑的微粒有不同的位移路徑,達成分離之目的。
Micro-Electro-Mechanical-System(MEMS)is developed rapidly in recent years, and it facilitates the study of micro total analysis system(μ-TAS). The system offers several potential advantages. It needs very small volume of samples and reagents, produces little waste, and offers short reaction and analysis time. It can decrease the cost by combing with micro-fabrication technology and has various applications for cell study、cell separation and drug detection.
In this study, we use numerical analysis to construct microchannel simulation system for multi-particle separation. The channel is designed and assessed according to flow resistance theory.
This research utilizes hydrodynamic focusing and asymmetrical exit channel resistance design to enhance particle separation. We can predict particle outlet more accurately by controling the flow distribution in pinch segment. In this study, fabrication is based on PDMS elastomer. The master is formed on silicon wafer using an epoxy-based photoresist. PDMS is cast against the master to produce molded layer containing channels which is then bonded on a glass to form the chip.
The result of the experiments and numerical simulation are compared and discussed. The particles of 2 μm、6 μm and 10 μm in diameter can be separated in our microchannel design through their different displacement paths.
1.Radbruch A. Flow cytometry and cell sorting. Springer-Verlag New York: 7-11, 1992.
2.Sharpe PT. Methods of cell separation. Elsevier, New York: 23-26, 1988.
3.Berger M, Castelino J, Huang R, Shah M, Austin RH. Design of a microfabricated magnetic cell separator. Electrophoresis 22: 3883-3892, 2001.
4.Nicole LW, Oscar V, Adele MML, Van H, Esther JK, Ad P, Asaph A, Arjen J, Van T, Jaap K. The application of DNA microarrays in gene expression analysis. Journal of Biotechnology 78: 271-280, 2000.
5.Vinet F, Chaton P, Fouillet Y. Microarrays and microfluidic devices: miniaturized systems for biological analysis. Microelectronic Engineering 61: 41-47, 2002.
6.http://www.bdtwn.com.tw/bdb/index.htm
7.Beebe D, Wheeler M, Zeringue H, Walters E, Raty S. Microfluidic technology for assisted reproduction. Theriogenology 57: 125-135, 2002.
8.Talary MS, Burt JPH, Pethig R. Future trends in diagnosis using laboratory-on-a-chip technologies. Parasitology 117: 191-203, 1998.
9.Burns MA, Johnson BN, Brahmasandra SN. An integrated nanoliter DNA analysis device. Science 282: 484-487, 1998.
10.Tiselius A. A new apparatus for electrophoretic analysis of colloidal mixture. Transactions of the Faraday Society 33: 524-531, 1937.
11.Li SF. Capillary electrophoresis: principles, practice and applications. Journal of Chromatography Library 52, 1993.
12.Huh D, Gu W, Kamotani Y, Grotberg JB, Takayama S. Microfluidics for flow cytometric analysis of cells and particles. Physiological Measurement 26: 73-98, 2005.
13.Fu LM, Yang RJ, Lin CH, Pan YJ, Lee GB. Electrokinetically driven micro flow cytometers with integrated fiber optics for on-line cell/particle detection. Analytica Chimica Acta 507: 163-169, 2004.
14.Lin CH, Lee GB. Micromachined flow cytometers with embedded etched optic fibers for optical detection. Journal of Micromechanics and Microengineering 13: 447-453, 2003.
15.Dittrich PS, Schwille P. An integrated microfluidic syatem for reaction, high-sensitivity, detection, and sorting of fluorescent cells and particles. Analytical Chemistry 75: 5767-5774, 2003.
16.Wolff A, Perch-Nielsen IR, Larsen UD, Friis P, Goranovic G, Poulsen CR, Kutter JP, Telleman P. Integrating advanced functionality in a microfabricated high-throughput fluorescent-activated cell sorter. Lab on a Chip 3: 22-27, 2003.
17.Yao B, Luo GA, Feng X, Wang W, Chen LX, Wang YM. A microfluidic device based on gravity and electric force driving for flow cytometry and fluorescence activated cell sorting. Lab on a Chip 4: 603-607, 2004.
18.Wang MM, Tu E, Raymond DE, Yang JM, Zhang H, Norbert H, Dees B, Mercer EM, Forster AH, Kariv I, Marchand PJ, Butler WF. Microfluidic sorting of mammalian cells by optical force switching. Nature Biotechnology 23: 83-87, 2005.
19.Chun H, Chung TD, Kim HC. Cytometry and velocimetry on a microfluidic chip using polyelectrolytic salt bridges. Analytical Chemistry 77: 2490-2495, 2005.
20.Lee GB, Hung CI, Ke BJ, Huang GR, Hwei BH, Lai HF, “Hydrodynamic focusing for a micromachined flow cytometer”, Journal of Fluids Engineering 123: 672-679, 2001.
21.Chmela E, Tijssen R. A chip system for size separation of macromolecules and particles by hydrodynamic chromatography. Analytical Chemistry 74: 3470-3475, 2002.
22.Lin CH, Lee GB. Micromachined flow cytometers with embedded etched optic fibers for optical detection. Journal of Micromechanics and Microengineering 13: 447-453, 2003.
23.Yamada M, Nakashima M, Seki M. Pinched flow fractionation: continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel. Analytical Chemistry 76: 5465-5471, 2004.
24.Takagi J, Yamada M, Yasuda M, Seki M. Continuous particle separation in a microchannel having asymmetrically arranged multiple branches. Lab on a chip 5: 778-784, 2005.
25.Berg HC, Purcell EM. Physics of chemoreception. Biophysics 20: 193-219, 1977.
26.Wereley ST, Whitacre I, Bashir R, Li HB. DEP particle dynamics and the steady drag assumption. 2004 NSTI Nanotechnology Conference and Trade Show - NSTI Nanotech 2004 1: 320-323, 2004.
27.Peng XF, Peterson GP, Wang BX. Frictional flow characteristics of water flowing through rextangular microchannel. Experimental Heat Ttransfer 7: 249-264, 1994.
28.Deshmukh AA. Continuous microfluidic mixing using pulsatile micropumps. University of California, Berkeley, Ph.D. in Mechanical Engineering, 2001.
29.高邦瀚。結合微流體力聚焦法與層流現象在微粒尺寸分離之應用。碩士論文。國立成功大學航空太空工程學系航太所,台南市,中華民國。2006。
30.Kern W, Poutinen DA. Cleaning solution based on hydrogen peroxide for use in semiconductor technology. Radio Corporation of American Review 31: 187-206, 1970.
31.Rubloff GW. Defect microchemistry in SiO2/Si structures. Journal of Vacuum Scinece & Technology A, 8: 1857-1863, 1990.
32.Shaw M, Nawrocki D, Hurditch R and Johnson D. Improving the process capability of SU-8. MicrosystemTechnologies 10: 1-6, 2003.
33.DATA Sheet for NANOTM SU-8 Negative Tone Photoresists, Formulations 2-25 & 50-100. released by MicroChem. Corp.
34.LaBianca N, Delorme J. High aspect ratio resist for thick film application. Proceedings of The Society of Photo-Optical Instrumentation Engineers-Proceedings of SPIE 2438: 846-852, 1995.
35.Linderholm P, Åsberg P. 3D/Multi-Layered PDMS microfluidic systems. Project Report, Linköping University, Department of Physics and Measurement Technology : 1-23, 2000.
36.Monahan J, Gewirth AA, Nuzzo RG. A method for filling complex polymeric microfluidic devices and arrays. Analytical Chemistry 73: 3191-3197, 2001.
37.Lee JN, Park C, Whitesides GM. Solvent compatibility of poly(dimethylsiloxane)-based microfluidic device”. Analytical Chemistry 75: 6544-6554, 2003.
38.McDonald JC. Fabrication of microfluidic system in poly ( dimethylsiloxane ). Electrophoresis 21: 27-40, 2000.
39.白庭育。幾何外型對三維相切微管道流場之影響。碩士論文。國立成功大學航空太空工程學系航太所,台南市,中華民國。2007。