| 研究生: |
張斯緯 Chang, SSu-Wei |
|---|---|
| 論文名稱: |
應用於直接降頻超寬頻接收機的3-5-GHz CMOS射頻晶片之研製 Research on 3-5-GHz CMOS RFICs for UWB Direct-Conversion Receiver Application |
| 指導教授: |
莊惠如
Chuang, H-R |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | 接收機 、超寬頻 、直接降頻 |
| 外文關鍵詞: | receiver, direct-conversion, UWB |
| 相關次數: | 點閱:164 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究應用於DS-UWB接收機之直接降頻式前端RFICs,包括兩個應用於UWB低頻段之寬頻雙平衡式混波器、一個寬頻發射放大器以及一個差動式寬頻前端晶片。其中之寬頻前端晶片又包括寬頻差動低雜訊放大器及寬頻雙平衡式混波器。晶片製作均使用TSMC 0.18-μm 1P6M CMOS製程,晶片量測上除了發射放大器使用on-wafer方式量測之外,其餘皆採用打鎊線至PCB測試板上進行。
3-5-GHz寬頻雙平衡式混波器中,第一顆使用電荷注入式之技巧增加混波器的線性度,量測結果顯示轉換增益為3.8-5.6 dB,IIP3為-7.8- -4 dBm,IP1dB為-18- -11.9 dBm,雜訊指數為11.1-21.2 dB,LO-RF、LO-IF、RF-IF隔離度皆大於23 dB。第二顆則針對寬頻雙平衡式混波器的輸出端緩衝器做變化,改以主動平衡器取代,量測結果顯示轉換增益為3.5-6.3 dB,IIP3為-9.6- -5 dBm,IP1dB為-13.9- -9 dBm,雜訊指數為10.3-18 dB,LO-RF、LO-IF、RF-IF隔離度皆大於22 dB。
3-5-GHz共閘級輸入式寬頻發射放大器,輸入採Butterworth濾波器方式做寬頻匹配,模擬結果顯示增益為11.9-12.8 dB,OP1dB為-1.3 dBm,OIP3為8.7 dBm,隔離度為35-43 dB,PAE為3.04%,量測結果顯示增益為2-7.15 dB,隔離度大於30 dB,由於製程製作上晶片的誤差,OIP3、OP1dB與PAE則無法量測與計算。
3-5-GHz差動式寬頻前端晶片,僅混波器的部份有動作而低雜訊放大器則無法作用。差動式寬頻前端晶片模擬結果顯示增益為23.7-25.8 dB,IIP3為-14.3- -16.6 dBm,IP1dB為-26.2- -25 dBm,隔離度皆大於40 dB。
附錄中也收錄了吾人前期所設計一3-5-GHz CMOS UWB寬頻負回授混波器,CMOS混波器雜訊模型介紹,及混合式S參數介紹。
This thesis presents the research on front-end RFICs of direct-conversion for DS-UWB receiver, including of two broad-band double-balanced mixers, a broad-band transmitting amplifier and a broad-band front-end chip all applied at UWB low band. The front-end chip includes a broad-band differential LNA and a broad-band double-balanced mixer. The chips are fabricated by a TSMC standard 0.18-μm CMOS process. The circuit measurements are performed by using a FR-4 PCB test fixture except for the transmitting amplifier chip.
The first mixer chip uses charge-injection method to improve its linearity. The measurement results exhibit a conversion gain of 3.8-5.6 dB, IIP3 of-7.8- -4 dBm, IP1dB of -18- -11.9 dBm, noise figure of 11.1-21.2 dB, and LO-RF, LO-IF, RF-IF isolation more than 23 dB. The second mixer chip substitutes the buffers of broad-band double-balanced mixer with an active balun. The measurement results exhibit a conversion gain of 3.5-6.3 dB, IIP3 of -9.6- -5 dBm, IP1dB of -13.9- -9 dBm, noise figure of 10.3-18 dB, and LO-RF, LO-IF, RF-IF isolation more than 22 dB.
The chip of a 3-5-GHz common-gate transmitting amplifier uses a Butterworth filter for input broad-band matching. The simulation results show a gain of 11.9-12.8 dB , OP1dB of -1.3 dBm(@4.1 GHz), OIP3 of 8.7 dBm(@4.1 GHz), isolation of 35-43 dB, and PAE of 3.04%. The measurement data shows a gain of 2-7.15 dB, isolation more than 30 dB. Due to some errors made by process, the parameters such as OIP3, OP1dB and PAE cannot be measured and calculated.
The measurement of the 3-5-GHz differential broad-band front-end circuits show that only mixer can work and LNA cannot work. The simulation results exhibit a gain of 23.7-25.8 dB, IIP3 of -14.3- -16.6 dBm, IP1dB of -26.2- -25 dBm, and isolation more than 40 dB.
The appendix also includes a 3-5-GHz UWB CMOS mixer using feedback method I studied and designed at early days, the introduction in noise model of a mixer, and the mixed-mode S-parameter.
[1]黃大榮,無線區域網路及數位電視寬頻調諧器之差動CMOS RFIC的設計研究,國立成功大學電機工程研究所碩士論文,民國九十三年。
[2] B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, 2001.
[3] David A. Johns and Ken Martin, Analog Integrated Circuits Design, Wiley, 1997.
[4] L. A. MacEachern and T. Manku, ”A charge-injection method for Gilbert cell biasing,” in IEEE Canadian Conf. vol. 1, pp. 365-368, May. 1998.
[5] X. Wang and R. Weber, “A novel low-voltage low-power 5.8 GHz CMOS down-conversion mixer design,” in Radio and Wireless Conf. pp. 301-304, Aug. 2003.
[6] M. Kawashima, T. Nakagawa, and K. Araki, “ A novel broadband active balun,“ in European Microwave Conf. vol. 2, pp. 495-498, Oct. 2003
[7] T. -H. Lee, The Design of CMOS Radio-frequency Integrated Circuits, Cambridge University Press, 2004.
[8] B. Razavi, Design of Integrated Circuits for Optical Communications, McGraw-Hill, 2003.
[9] 張忠平,超寬頻無線通訊射頻收發機CMOS射頻晶片之設計研究,國立成功大學電機工程研究所碩士論文,民國九十四年。
[10] M. -D. Tsai, H. Wang,” A 0.3-25-GHz ultra-wideband mixer using commercial 0.18-μm CMOS technology,” IEEE, Micro. Wireless Compon. Lett., vol. 14, pp. 522-524, Nov. 2004.
[11] M. -D. Tsai, C. -S. Lin, C. -H. Wang, C. -H. Lien, and H. Wang,” A 0.1-23-GHz SiGe BiCMOS analog multiplier and mixer based on attenuation-compensation technique,” in IEEE Radio Frequency Integrated Circuits Symp., pp. 417-420, 2004.
[12] Richard C. -H. Li, Key Issues in RF/RFIC Circuit Design, 2005.
[13] D. E. Bockelman and W. R. Eisenstadt, “Combined differential and common-mode scattering parameters: theory and simulation,” IEEE Trans. Microwave Theory Tech., vol. 43, pp. 1530-1539, July. 1995.
[14] H. Darabi and A. A. Abidi, “Noise in RF-CMOS mixers: a simple physical model,” IEEE Trans. Solid-State Circuits, vol. 35, no.1, pp. 15-25, Jan. 2000.
[15] N. G. Einspruch and G. Gildenblat, “VLSI electronics microstructure science,” in advanced MOS device physics: Ney York: Academic, 1989, vol. 18.
[16] D. K. Shaeffer and T. -H. Lee,“A 1.5-V 1.5-GHz CMOS low noise amplifier,”IEEE J. Solid-State Circuits, vol. 32, no. 5, pp. 745-759, May. 1997.
[17] http://www.uwbforum.org/
[18] A. Ismail and A. A. Abidi, “A 3-10-GHz low-noise amplifier with wideband LC-ladder matching network,” IEEE J. Solid-State Circuits, vol. 39 , no. 12, pp. 2269-2277, Dec. 2004.
[19] C. -W Kim, M. -S Kang, P. T. Anh, H. -T Kim, and S. -G Lee, ”An ultra-wideband CMOS low noise amplifier for 3-5-GHz UWB system,” IEEE J. Solid-State Circuits, vol. 40, pp. 544-547, Feb. 2005.
[20] A. Bevilacqua, C. Sandmer, A. Gerosa, and A. Neviani, “A fully integrated differential CMOS LNA for 3-5-GHz ultrawideband wireless receivers,” IEEE Micro. Wireless Compon. Lett., vol. 16, no. 3, pp. 134-136, Mar. 2006.
[21]X. Fan, E. S. -Sinencio, and J. S. -Martinez, “A 3 GHz-10 GHz common gate ultrawideband low noise amplifier,” in IEEE Midwest Symp. On Circuits and Systems, pp. 631-634, Aug. 2005.
[22] B. Razavi, T. Aytur, C. Lam, F. -R Yang, K. -Y. Li, R. -H. Yan, H. -C. Kang, C. -C. Hsu, and C. -C. Lee, “A UWB CMOS transceiver,” IEEE J. Solid-State Circuits, vol. 40, pp. 2555-2563, Dec. 2005.
[23]S. Lida, K. Tanaka, H. Suzuki, N. Yoshikawa, N. Shoji, B. Griffiths, D. Mellor, F. Hayden, L. Butler, and J. Chatwin, ”A 3.1 to 5 GHz CMOS DSSS UWB transceiver for WPANs,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, vol. 1, pp. 214-594, Feb. 2005.
[24]邱永明,2.4及5.7GHz 802.11 WLAN 接收機之CMOS單晶射頻積體電路,國立成功大學電機工程研究所碩士論文,民國九十二年。