簡易檢索 / 詳目顯示

研究生: 李雅芝
Li, Ya-Jhih
論文名稱: 矽摻雜之鍺酸鑭基磷灰石離子導體之晶體結構與電性
Crystal Structure and Electrical Properties of La/Ge Based Apatite Ionic Conductors Doped with Si
指導教授: 黃啟原
Huang, Chi-Yuen
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 87
中文關鍵詞: 矽摻雜鍺酸鑭固態氧化物燃料電池磷灰石結構
外文關鍵詞: lanthanum germanium, SOFC, apatite
相關次數: 點閱:103下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用固態反應法製備矽摻雜鍺酸鑭基磷灰石電解質材料,藉由添加不同量的 Si4+ 取代鍺酸鑭基磷灰石中四面體的 Ge4+ 位置,試圖以固態反應法合成純相的 La10Ge6-xSixO27 (x=0、1.2、2.4、3.6、4.8、6),並針對以固態反應法合成純相的 La9.5Ge6-xSixO26.25 系統 (x= 0、0.6、1.2、1.8、2.4、3.6、4.8、6),觀察其晶體結構的變化與導電性質間的關聯性。
    實驗結果顯示合成 La10Ge6-xSixO27 系統時,由 x=0 的 X 光繞射圖譜,存在許多雜相,繞射峰寬化,推測其結構接近六方晶系;而 x=6 存在未反應完全的 La2O3 與 La2SiO5 二次相,故利用固態反應法難以合成純相。
    合成 La9.5Ge6-xSixO26.25 系統的結果顯示,當矽的添加量達到 x = 3.6 時,已出現明顯二次相 La2SiO5 的生成,故 La9.5Ge6-xSixO26.25 的固溶範圍約為 2.4,且其合成單一相的煅燒溫度也隨著 Si 含量而增加。並選擇具純相的 La9.5Ge6-xSixO26.25 (x=0、0.6、1.2、1.8、2.4) 粉末以 Rietveld 方法模擬精算晶格常數,觀察於固溶極限內,矽的添加會使鍺氧四面體產生改變而影響周遭晶體結構。以燒結後相對密度達 95% 以上之試片,得到在 x = 1.8 時具有較高導電率 0.0335 S/cm (800℃),且其晶體結構中具有最大的 O3-O4 距離 3.3430Å 與 最大的 O3-La2 (長邊) 的距離 3.4725 Å,又進一步推測其間隙氧移動的範圍為位於 O3-La2 (長邊) 的範圍,並沿著 c 軸做螺旋路徑的遷移。

    A series of silicon doped Lanthanum-Germanates apatite-type materials, La10Ge6-xSixO27 (x=0, 1.2, 2.4, 3.6, 4.8, 6) were prepared in an attempt to synthesize a single phase by solid-state method. Moreover, in order to observe the relationship between changes in the crystal structure and electrical conductivity when Si4+ with different content were doped into the Ge4+ sites of tetrahedra, single phase La9.5Ge6-xSixO26.25 (x= 0, 0.6, 1.2, 1.8, 2.4, 3.6, 4.8, 6) series were prepared using the solid-state method.
    In the La10Ge6-xSixO27 series, the XRD pattern results indicated that lots of second phases existed and that the diffraction peak broadened when x=0; non-reacted La2O3 and second phase La2SiO5 existed when x=6. Thus, it’s difficult to synthesize a single phase using athe solid-state method.
    In the La9.5Ge6-xSixO26.25 series, the XRD pattern results indicated that second phase La2SiO5 existed when x=3.6. Therefore, the solid solubility limit is about x =2.4, and the single phase calcination temperature increases as Si4+ content increases. Subsequently, five single phase powder samples, La9.5Ge6-xSixO26.25 (x=0, 0.6, 1.2, 1.8, 2.4) were selected to calculate lattice parameters using the Rietveld method as well as to analyze changes in the crystal structure; and the same five over-95% relative density bulks were selected to measure electrical conductivity. The results indicated that x=1.8 exhibited the highest conductivity at 800℃ (0.0335 S/cm), and that in the crystal structure analysis, x=1.8 had longest O3-O4 distance (3.3430Å) and the longest O3-La2 (longer) distance (3.4725Å). This indicated that x=1.8 had more space to allow oxygen ion for migration. Furthermore, the exsiting interstitial oxygen regions were around the O3-La2 (longer) space, and exhibited a sinusoidal-like path along the c-axis.

    摘要 I Extended Abstract II 誌謝 XIII 表目錄 XVII 圖目錄 XIX 第一章 緒論 1 1-1 前言 1 1-2 研究動機 4 1-3 研究目的 5 第二章 前人文獻與理論基礎 6 2-1 燃料電池 6 2-1-1 燃料電池之工作原理 7 2-1-2 燃料電池之種類與優缺點 8 2-2 固態氧化物燃料電池 10 2-2-1 固態氧化物燃料電池之工作原理 10 2-2-2 固態氧化物燃料電池之優點 11 2-2-3 固態氧化物燃料電池之結構 11 2-2-4 固態氧化物燃料電池電解質之種類 13 2-3 磷灰石固態電解質 17 2-3-1 磷灰石固態電解質的結構 19 2-3-2 磷灰石固態電解質的導電傳遞載體 23 2-3-3 磷灰石固態電解質的導電方向 23 2-3-4 氧離子傳遞導電機制 25 2-4 矽酸鑭基電解質與鍺酸鑭基電解質 30 2-4-1 矽酸鑭基電解質 30 2-4-2 鍺酸鑭基電解質 31 2-4-3 矽酸鑭基與鍺酸鑭基電解質之比較 32 第三章 實驗方法與分析 34 3-1 粉末製備 35 3-1-1 起始原料 35 3-1-2 混合矽酸鑭基與鍺酸鑭基粉末製備 35 3-1-3 粉末之熱差/熱重分析 37 3-1-4 粉末煅燒 37 3-2 煅燒粉末分析 37 3-2-1 X 光粉末繞射儀 37 3-2-2 掃描式電子顯微鏡 39 3-3 燒結體製備 39 3-4 燒結體分析 40 3-4-1 燒結體收縮量測 40 3-4-2 燒結體密度量測 40 3-4-3 X 光繞射儀 40 3-4-4 掃描式電子顯微鏡 41 3-5 電性量測 41 3-5-1 直流式電性量測 41 3-5-2 Arrhenius 方程式 42 第四章 結果與討論 43 第一部份 La10Ge6-xSixO27 系統 43 4-1 起始粉末分析 43 4-2 煅燒粉末分析 46 第二部分 La9.5GexSi6-xO26.25 系統 50 4-1 起始粉末分析 50 4-2 煅燒粉末分析 51 4-3 燒結體分析 67 4-4 電性分析 71 4-5 晶體結構與電性綜合討論 74 第五章 結論 83 參考文獻 84

    [1] H. Arikawa, H. Nishiguchi, T. Ishihara & Y. Takita. “Oxide ion conductivity in Sr-doped La10Ge6O27 apatite oxide,” Solid State Ionics, 136-137, 31-37 (2000).
    [2] S. Nakayama, H. Aono and Y. Sadaoka. “Ionic conductivity of Ln10(SiO4)6O3 (Ln = La, Nd, Sm, Gd and Dy),” Journal of Materials Chemistry, 5(11), 1801-1805 (1995).
    [3] 經濟部能源局 & 財團法人中衛發展中心 (2010)。2010年能源產業技術白皮書,台北市:經濟部能源局,頁341,(2010)。
    [4] Fuel Cell Today Limited, part of Johnson Matthey plc. Technologies:SOFC. Retrieved November 05, 2013, from FuelCellToday Website:http://www.fuelcelltoday.com/about-fuel-cells/technologies/sofc
    [5] 中国大百科全书出版社版權所有。《中国大百科全书》第二版 螢石,中国大百科全书出版社,2014年01月21日,取自中国大百科全书数据库,
    網址:http://dbk2.chinabaike.org/indexengine/entry_browse.cbs?db=dbk2&value=%D3%A9%CA%AF&jm=&flaghref=1
    [6] Junjiang Zhu & Arne Thomas. “Perovskite-type mixed oxides as catalytic material for NO removal,” Applied Catalysis B: Environmental, 92 (3–4), 225~233 (2009).
    [7] S. Nakayama, Y. Higuchi, Y. Kondo & M. Sakamoto. “Effects of cation- or oxide ion-defect on conductivities of apatite-type La–Ge–O system ceramics,” Solid State Ionics, 170, 219~223 (2004).
    [8] P.R. Slater, J.E.H. Sansom & J.R. Tolchard. “Development of Apatite-Type Oxide Ion Conductors,” Chemistry Record, 4 (3), 373~384 (2005).
    [9] S. Nakayama & M. Sakamoto. “Electrical Properties of New Type High Oxide Ionic Conductor RE10Si6O27 (RE=La, Pr, Nd, Sm, Gd, Dy),” Journal of the European Ceramic Society, 18, 1413-1418 (1998).
    [10] Martin J. Buerger. Elementary crystallography. published by Wiley. New York (1963).
    [11] S. Nakayama, H. Aono & Y. Sadaoka. “Ionic conductivity of Ln10(SiO4)6O3 (Ln = La, Nd, Sm, Gd and Dy),” Chemistry Letters, 24, 431~432 (1995).
    [12] S. Nakayama, M. Sakamoto, M. Higuchi, K. Kodaira, M. Sato, S. Kakita, T. Suzuki & K. Itoh. “Oxide ionic conductivity of apatite type Nd9.33(SiO4)6O2 single crystal,” Journal of the European Ceramic Society, 19, 507-510 (1999).
    [13] J.E.H. Sansom, D. Richings & P.R. Slater. “A powder neutron diffraction study of the oxide-ion-conducting apatite-type phases, La9.33Si6O26 and La8Sr2Si6O26,” Solide State Ionics, 139, 205-210 (2001).
    [14] Julian R. Tolchard, M. Saiful Islam & Peter R. Slater. “Defect chemistry and oxygen ion migration in the apatite-type materials La9.33Si6O26 and La8Sr2Si6O26,” Journal of Materials Chemistry, 13, 1956-1961 (2003).
    [15] Alison Jones, Peter R. Slater and M. Saiful Islam. “Local Defect Structures and Ion Transport Mechanisms in the Oxygen-Excess Apatite La9.67(SiO4)6O2.5,” Chemistry of Materials,20, 5055-5060 (2008).
    [16] Emilie Béchade, Olivier Masson, Tomoyuki Iwata, Isabelle Julien, Koichiro Fukuda, Philippe Thomas & Eric Champion. “Diffusion Path and Conduction Mechanism of Oxide Ions in Apatite-Type Lanthanum Silicates,” Chemistry Materials,21 , 2508-2517 (2009).
    [17] S. Tao & John T.S. Irvine. “Preparation and characterisation of apatite-type lanthanum silicates by a sol-gel process,” Materials Research Bulletin, 36, 1245-1258 (2001).
    [18] Laura León-Reina, Enrique R. Losilla, María Martínez-Lara, Sebastián Bruque & Miguel A.G. Aranda. “Interstitial oxgen conduction in lanthanum oxy-apatite electrolytes,” Journal of Materials Chemistry, 14, 1142-1149 (2004).
    [19] S. Nakayama. “Ionic conductivities of apatite-type Lax(GeO4)6O1.5x-12(x=8-9.33) polycrystals,” Journal of Materials Science Letters, 20, 1627-1629 (2001).
    [20] J.E.H. Sansom, L. Hildebrandt & P.R. Slater. “An Investigation of the Synthesis and Conductivities of La-Ge-O Based Systems,” International Journal of Ionics, 8, 155~160 (2002).
    [21] L. León-Reina, M.C. Martín-Sedeño, E.R. Losilla, A. Cabeza, M. Martínez-Lara, S. Bruque, F.M.B. Marques, D.V. Sheptyakov & M.A.G. Aranda. “Crystalchemistry and Oxide Ion Conductivity in the Lanthanum Oxygermanate Apatite Series,” Chemistry of Materials, 15, 2099-2108 (2003).
    [22] Stevin S. Pramana, Wim T. Klooster & T.J. White. “Framework ‘interstitial’ oxgen in La10(GeO4)5(GeO5)O2 apatite electrolyte,” Acta Crystallographica Section B Structural Science, 63, 597-602 (2007).
    [23] S. Nakayama & M. Sakamoto. “Ionic conductivities of apatite-type Lax(GeO4)6O1.5x-12 (x=8-9.33) polycrystals,” Journal of Materials Science Letters, 20, 1627~1629 (2001).
    [24] L. León-Reina, J. Manuel Porras-Vázquez, Enrique R. Losilla, & Miquel A. G. Aranda. “Interstitial oxide positions in oxygen-excess oxyapatites,” Solid State Ionics, 177, 1307~1315 (2006).
    [25] L. León-Reina, E.R. Losilla, M. Martínez-Lara, M.C. Martín-Sedeño, S. Bruque, P. Núñez, D.V. Sheptyakov & M.A.G. Aranda. “High oxid ion conductivity in Al-doped germanium qxyapatite,” Chemistry of Materials,17, 3, 596-600 (2005).
    [26] 林婉茹、徐永富、王錫福。「摻雜對磷灰石結構鍺酸鑭基電解質應用於固態氧化物燃料電池之特性影響研究」,國立台北科技大學材料工程與科學研究所碩士論文 (2012)。
    [27] 曾儒雅、黃啟原。「鈮摻雜對鍺酸鑭基磷灰石電解質晶體結構之研究」,國立成功大學資源工程系碩士論文 (2012)。
    [28] Ernest M. Levin, Carl R. Robbins and Howard F. McMurdie, Phase Diagrams for Ceramists 1969 Supplement (Figures 2067-4149), Columbus, Ohio : American Ceramic Society, p.102 (1969).
    [29] J.E.H. Sansom, A. Najib, P.R. Slater, “Oxide ion conductivity in mixed Si/Ge-based apatite-type systems,” Solid State Ionics,175,353-355 (2003).

    下載圖示 校內:2017-08-29公開
    校外:2017-08-29公開
    QR CODE